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1 Introduction

As our ability to specify and develop programs for reactive systems increases, there is a
growing interest in the representation of more realistic features of such systems in the
formal models and languages used for their specification, verification, and development.

As is the case with the application of mathematics to other scientific and engineering
disciplines, no single model can fully capture the physical phenomenon under study. In-
stead, we construct a hierarchy of models, each refining (but not necessarily invalidating)
its predecessor by the inclusion of additional details.

A good example of the efficient utilization of a hierarchy of models can be found in
hardware design, where the orderly development of a large circuit may proceed through
several stages, starting at a functional system specification and proceeding through regis-
ter transfer description, gate level description, device level representation, layout design,
and so on. Each of those descriptions adds more details to its predecessor but is consis-
tent with it, and in many cases is even derived from the previous stage. Some interesting
approaches even propose multi-level simulation and analysis in which different parts of
the same system are represented at different levels of detail.

Following this approach, this paper presents a hierarchy of three models for the spec-
ification and verification of reactive systems:

"* A reactive systems model that captures the qualitative (non-quantitative) temporal
precedence aspect of time. This model can only identify that one event precedes
another but not by how much.

"* A real-time systems model that captures the metric aspect of time in a reactive
system- This model can measure the time elapsing between two events.

"* A hybrid systems model that allows the inclusion of continuous components in
a reactive real-time system. Such continuous components may cause continuous
change in the values of some state variables according to some physical or control
law.

For each of these levels of description, the paper provides:



* A computational model defining the set of behaviors (computations) that are to be
associated with systems in the considered model-

* A requirement specification language for specifying properties of systems within the
model. The languages we will consider are all variants of temporal logic extended
to deal with the new aspects included in the model.

e A system description language for describing systems within the model. We will use
both a textual programming language and appropriate extensions of the graphical
language of statecharts [Har87] to present systems.

* A set of proof rules by which valid properties of systems can be verified, showing
that the systems satisfy their specifications.

* Examples illustrating the use of the presented proof rules for the verification of
properties.

While the qualitative model is well estabhshed and has been in use for several years
now (e.g., tMP91b]), the real-time model presented here represents work in progress, and
research on the hybrid model has just started.

Excerpts of this paper have been presented in a prelminary form in MP92a! and
iMP92b].

2 Reactive Systems

The qualitative model of reactive systems uses an abstract notion of time, based on the
ordering of events during an observed computation. This is the main model used, for
example, in [MP91b].

2.1 Computational Model: Fair Transition System

The computational model for the qualitative level is that of fair transition systemrs. Such
a system consists of the following components.

* V = {ul, _.,u,} : A finite set of state variables. Some of these variables repre-
sent data variables, which are explicitly manipulated by the program text. Other
variables are control variables, which represent, for example, the location of control
in each of the processes in a concurrent program. We assume each variable to be
associated with a domain over which it ranges.

We define a state s to be a type consistent interpretation of V, assigning to each -•
variable u C V a value s[u] over its domain. We denote by ES the set of all states

* 0 The initial condition. This is an assertion characterizing all the initial states.
i.e., states at which a computation of the program can start. A state is defined to
be initial if it satisfies 0. It is required that 0 be satisfiable, i.e., there exists at
least one state satisfying . -)
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* T : A finite set of transitions. Each transition r E T is a function

r ' : ,-- 2E,

mapping each state 5 E E into a (possibly empty) set of r-successor states r(s) C E.

A transition r is enabled on s iff r(s) j 0. Otherwise r is disabled on s.

The function assc,:iated with a transition r is represented by an assertion p,(V, V'),
called the transition relation, which relates a state s E Z to its v-successor .' E
r(s) by referring to both unprimed and primed versions of the state variables. An
unprimed version of a state variable refers to its value in s, while a primed version
of the same variable refers to its value in a'. For example, the assertion z' = -z 1
states that the value of x in s' is great, r by 1 than its value in s.

*3 C T : A set of just transitions (also called weakly fair transitions). Intuitively, the
requirement of justice for r E 3 disallows a computation in which r is continually
enabled beyond a certain point but taken only finitely many times.

C C T : A set of compassionate transitions (also called strongly fair transitions).
Intuitively, the requirement of compassion for r E C disallows a computation in
which r is enabled infinitely many times but taken only finitely many times.

The transition relation c,.(V, V') identifies state s' as a r-successor of state s if

ý3, -)ý 'ý W ,(, V'),

where (s, s') is the joint interpretation which interprets z C V as s~z], and interprets z'
as s'[X].

The enabledness of a transition T can be expressed by the formula

En(r) ( V),

which is true in s iff s has some r-successor.
We require that every state s C E has at least one transition enabled on it. This is often

ensured by including in T the idling transition T1 (also called the stuttering transition).
whose transition relation is p, : (V = V'). Thus, a' is a r,-successor of s iff s' = s.

Let S be a transition system for which the above components have been identified.
We define a computation of S to be an infinite sequence of V-states a : so, si, s2 , ... , for
some vocabulary V that contains V, satisfying the following requirements:

* Initation: so is initial, i.e., .so H E.

* Consecution: For each j = 0, 1,-.., the state sj+i is a r-successor of the state s,, i.e..

sj+l E r(sj), for some -r C 7" In this case, we say that the transition r
is taken at position j in or.

0 Justice: For each r C j it is not the case that r is continually enabled beyond
some point in T but taken at only finitely many positions in or.

* Compassion: For each r E C it is not the case that T is enabled on infinitely many
states of a hut taken at only finitely many positions in o.

For a system S, we denote by Comp(S) the set of all computations of S.
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2.2 A Simple Programming Language: Syntax

To present programs, we introduce a simple concurrent programming langdage (SPL)
in which processes communicate by shared variables. The following is a list of some
of the statements with an explanation of their intended meanings. We present only the
statements that are used in this paper. The reader is referred to [MP91b' for a description
of the full language.

s Assignment: For a variable y and an expression e of appropriate type,
y := c

is an assignment statement.
* Await: For a boolean expression c,

await c
is an await statement. We refer to condition c as the guard of the statement.

Execution of await c changes no variables. Its sole purpose is to wait until c becomes
true, at which point it terminates.

0 Concatenation: For statements S1,. .. ,k,

$i;-...;Sk
is a concatenation statement. Its intended meaning is sequential composition. The first
step in an execution of SI; ... ;S is the first step in an execution of S1. Subsequent
steps continue to execute the rest of S1 , and when S1 terminates, proceed to execute
S2, S3 ,. . . , Sk-.

In a program presented as a multi-line text, we often omit the separator ';, at the end
of a line.

* While: For a boolean expression c and a statement S,
while c do S

is a while statement. Its execution begins by evaluating c. If c evaluates to F, execution
of the statement terminates. Otherwise, subsequent steps proceed to execute S. When S
terminates, c is tested again.

Programs

A program P has the form

P [declaration; (Pi :: (te: S,; ii :J .. P, :: Y,-: Sm; , :11,

where P, " [ti: Sl; 1 1 :],..., P, :: [e,,,: S,,,; C, :J are named processes. The names of the
program and of the processes are optional, and may be omitted. The body (1j: S,; i, i of
process P, consists of a statement Si and an exit label ii, which is where control resides
after execution of Si terminates. Label 4, can be viewed as labeling an empty statement
following S.

A declaration consists of a sequence of declaration statements of the form
variable, ... , variable: type where ýp.

Each declaration statement lists several variables that share a common type and identifies
their type, i.e., the domain over which the variables range. We use basic types such as
integer, character, etc., as well as structured types, such as array, list, and set.

The optional assertion ýo imposes constraints on the initial values of the variables
declared in this statement.
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Let l,..., ý,, be the assertions appearing in the declaration statements of a program
We refer to the conjunction ýp : W, A ... A V, as the data-precondition of the program.

Fig. I presents a simple program consisting of two processes communicating by the
shared variable z, initially set to 0. Process P1 keeps incrementing variable y as long as
x = 0. Process P2 has only one statement, which sets z to 1. Obviously, once z is set
to 1, process P2 terminates and some time later so does P1, as soon as it observes that
z 0.

z, y: integer where x = y 0

to: while z=Odo

Figure 1: Program ANY-Y: A simple concurrent program.

2.3 Semantics of the Programming Language

The semantics of the simple programming language is obtained by showing how each
program can be viewed as a fair transition system. This is done by identifying each of
the components of a fair transition system for a given program.

Consider a program P given by
[declaration; [PI :: [gt: SI; 1' :ij . ' l Pm, :: it,: S,.; - : .

Let Lp denote the set of locations of program P. We refer the reader to [MP91bi where
a location is defined as an equivalence class of labels. For our simpler treatment here, it
suffices to consider locations as identical to labels. We also assume that we know how to
compute, for each statement S of a given program, its post-location, which is the location
reached after the termination of S,

In program ANY-Y, for example, the post-location of statement m0 is mi, while the
post-location of statement t, is t o.

We will show how to define a fair transition system Sp corresponding to program P

State Variables and States

The state variables V for system Sp consist of the data variables Y = {Yl,.. , y,,} that are
declared at the head of the program, and a single control variable 7r. The data variables
Y range over their respectively declared data domains. The control variable 7r ranges over
subsets of Lp, i.e., sets of locations. The value of 7r in a state denotes all the locations of
the program in which control currently resides.

For example, thc state variables for program ANY-Y are I' {fr, X,y}, where 2 and y
range over the integers while 7r ranges over subsets of {Jf, f, f 2, mo, rnn}.



As states we take all possible interpretations that assign to the state variables values
over their respective domains. For example, the initial state of program ANY-Y is

(r : {eo,mo}, X 0, Y : 0).

Transitions

To ensure that every state has some transition enabled on it, we uniformly include the
# idling transition r, in the transition system corresponding to each program. The transition

relation for r, is
P': V' = V.

We proceed to define the transition relations for the transitions associated with each
of the previously introduced statements.

0 Assignment: Consider the statement [t : y := e, : .. where I is the post-
location of 1.

With this statement we associate a transition rl, with the transition relation

pt: tE Er A r' =U-{}U{J A y'=e A A (u'=u)
uEY-{i}

The last conjunct claims that all data variables, excluding y, retain their values over the
transition ri.

0 Await: With the statement [I: await c; I ... ], we associate a transition r1 ,
with the transition relation

pt: ICEr A r'= r-{I t} A cA Y'= Y
The transition rT1 is enabled only when control is at I and the condition c holds. When
taken, it moves from I to location I. The conjunct Y' = Y stands for the conjunction

A (u' u).
uLEY

• Whlhe: With the statement It: [while c do [t:S]]; .], we associate a
transition r1 with the transition relation

P1 C 76r A V A Y'=Y.
--,c A 7 r, . 7 r - } U { ,

According to pt, when c evaluates to T control moves from I to t, and when c evaluates to
F control moves from I to 1. Note that, in this context, the post-location nf S is f NV-'e
also that the enabling transition of rt is I C 7r which does not depend on the value of c.

Thus, the fair transition system corresponding to program ANY-Y has the transitions

T, r,,, Ttl,, and 7,),.

Transition rt,, for example, has the transition relation

t, : tC7r A 7r -=-,r-{u1 1 1{f} A y'=y + l A x,'=.

- • * | ti



The Initial Condition

Let ýp denote the data precondition of program P. We define the initial condition 0 for

Sp as

0: ir A{t,...,t,} A p.
This imphes that the first state in an execution of the program begins with the control
variable pointing to the initial locations of the processes, and the data variables satisfying
the data precondition.

For example, the initial condition for program ANY-Y is given by
O: ir={to,mo} A z=0 A y =0.

Justice and Compassion

For the simplistic programming language we have presented, the justice and compassion
requirements are straightforward.

* Justice: As the justice set, we take T - {-r,}, the set of all transitions, excluding
the idling transition r,.

* Compassion: As the compassion set, we take the empty set. This will suffice
for the examples presented in this paper. The programs presented in ,MP91b use addi-
tional statements such as semaphore and communication statements and these give rise
to nonempty compassion sets.

This concludes the definition of the transition system Sp.

Examples of Computations

Identification of the fair transition system Sp corresponding to a program P gives rise to
a set of computations Comp(P) which can be viewed as the possible executions of P, i.e.
Comp(P) - Comp(SP).

Consider the following computation of (the transition system corresponding t,:,) pro-
gram ANY-Y:

ý7r.{to, Mo} ,X.o, Y-0) ..• : I{to, Ml}, X I, Yo :0)
(7r : t. { ,-nf , x -1, y.0) j L.

The presentation of this computatiun contains arrows labeled by the transi)*•n that ls
taken at each step. This computation corresponds to the case that ma is the first transitIOm
taken. Taking this transition sets z to 1, following which process P1 terminates in one
step leading to the terminal state (ir : {2,ml} , x 1, y " 0W. The only transition t-nabled
on this state is 7T, which is repeated forever.

The following computation corresponds to the case that process P1 executes statement

11 before mo is executed.

(7r Ito, m,},z I 0, y.0) - 1- 7 (i-{e 1,mo}, -,yt Ix 'y

(7r I{ o,m }1, X 0 , y 1) --- (r . I. o,M.

In a similar way, we can construct for each n i< 0 a computation that executes the bdv
of statement to n times and then terminates in the final state '7r { 77.11 } £ 1. X i

• .', I I I i7



However, the sequence

(Or{to,mo},l O,yz O -ý . ýIrI{t,,mo},z:O,y:O) --',

(,r- {o,mo}, X 0, Y 1) - I0 I. {t,,mo},o y 1)
ý,r {to,me}, X O, y 2' "71 11,t,, ,y 2

(ir{f'm} 1  .Oy2 -s-- tr:{!1 ,mo},z:O,y:2) ---.
(-,r {to, m e}, x "0 3. ) _ . .

in which transition -n is never taken is not an admissible computation. This is because
it violates the justice requirement towards mi, which is continually enabled but never
taken.

This illustrates how the requirement of justice ensures that program ANY-Y always
terminates.

2.4 Requirement Specification Language: Temporal Logic

As a requirement specification language for reactive systems (under the qualitative model)
we take temporal logic [MP91bi.

We assume an underlying assertion language C which contains the predicate calculus
and interpreted symbols for expressing the standard operations and relations over some
concrete domains. Easy reference to the location of control is provided by the predicate
at-ti, which is an abbreviation for the formula . CE ir, stating that control is currently
at location Ii. We also use the expression at-lij as an abbreviation for the disjunction
at_,i V at-tj.

We refer to a formula in the assertion language L as a state formula, or simply as an

assertion.
A temporalformula is constructed out of state formulas to which we apply the boolean

operators -, and V (the other boolean operators can be defined from these), and the
following basic temporal operators:

(- - Next --- Previous

U - Until S - Since
A model for a temporal formula p is an infinite sequence of states a : s0 , sI,._ where

each state sj provides an interpretation for the variables mentioned ir, p.
Given a model o, as above, we present an inductive definition for the notion of a

temporal formula p holding at a position j > 0 in o,, denoted by (rj) -= p.

0 For a state formula p,

That is, we evaluate p locally, using the interpretation given by s,.
• (o,j) -p ,=z (0",j) ý4 p
* (o',j) p\q €=• (aj) por (aj) q
* (*) P C 22-- (C.j -1) • p

S(u.j) pZq ¢z-= for some k j,(o, k) ý-z q,

and for every z such that j i., k, (rr, i) K p
* (a )J) ip p j - 0 and (oT.j - 1) •= p

( (o.) r.: pSq t-z> for some k < 1,(a, k) k-z q.
and for every 1 such that j t k, (a, i) p

A dditional temporal operators can be defintd as follcws



(>p TU p - Eventually

Op -'©-'p - Henceforth

pWq= C~pV(pUq) - Waiting-for, Unless, Weak Until
Op = T S p - Sometimes in the past

El p = -,0 -'p - Always in the past
pB q = op V (pSq) - Back-to, Weak Since

Another useful derived operator is the entailment operator, defined by:

We refer to U , 0, o, and W as future operators and to (D, S: <>, ,and B
as past operators.

A formula that contains no future operators is called a past formula. A formula that
contains no past operators is called a future formula. Note that a state formula is both a
past and a future formula.

We refer to the set of variables that occur in a formula p as the vocabulary oj p.
For a state formula p and a state s such that p holds on s, we say that s is a p-state.

A state formula that holds on all states is called assertzonally valid.
For a temporal formula p and a position j > 0 such that (a,j) = p, we say that j is a

p-position (in a). Note that the satisfaction of a past formula at position j > 0 depends
only on the finite prefix s0 ,...,s,.

If (a,0) k p, we say that p holds on a, and denote it by a • p. A formula p is called
satisfiable if it holds on some model. A formula is called temrorally valid if it holds on all
models.

Two formulas p and q are defined to be equivalent, denoted p -. q, if the formula p .-- q
is valid, i.e., a7 r p iff a- • q, for all models ar.

In the sequel, we adopt the convention by which a formula p that is claimed to he
vald is assertionally valid if p is an assertion, and is temporally valid if p contains at least

one temporal operator.
The formulas p and q are defined to be congruent, denoted p ; q, i. the formula

(p '--, q) is valid, i.e., (aj) E= p iff (aj) ý= q, for all models a and all positions j > 0. If
p z q then p can be replaced by q in any context, i.e., •(p) ; c(q) for any formula ;(p)
containing occurrences of p.

The notion of temporal validity requires that the formula holds over all models. Given
a program P, we can restrict our attenticn to the set of models which correspond to

computations of P, i.e., Comp(P). This leads to the notion of P-validity, by which a
temporal formula p is P-valid (valid over program P) if it holds over all the computations

of P. Obviously, any formula that is temporally valid is also P-valid for any program P
In a similar way, we obtain the notions of P-satisfiability and P-equivalence.

A state s that appears in some computation of P is called a P-accessible state. A
state formula is called P-state valid if it holds over all P-accessible states. Obviously, any

state formula that is assertionally valid is also P-state valid for any program P.

Again, we adopt the convention by which we may refer to a P-state valid formula
simply as P-valid.
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2.5 Specification of Properties

A temporal formula ýp that is valid over a program P specifies a property of P, i.e., states
a condition that is satisfied by all computations of P. As is explained in 'MP91b, the
properties expressible by temporal logic can be arranged in a hierarchy that identifies
different classes of properties according to the form of formulas expressing them.

Here we wiql consider only properties falling into the two most important classes: safety
and response.

Safety Properties

Safety properties are those that can be expressed by a formula

z0,

for some past formula 0i. We refer to a formula of this form as a canontcal safety formula
In this paper, we will mainly consider safety properties expressible by the invariance

formula oT, where ýo is a state formula, and the wazting-for formula p --:(: IN q) for
state formulas p, p, and q.

The formula p =z-(cp W q) states that, following each p-position, there is a succession
of p-positions that either extends to infinity or is terminated by a q-position. This is a
safety property since the waiting-for formula is equivalent to the canonical safety formula

(-p)Bq)

The latter formula states that every -Vi-position j satisfies (-p) B q, meaning that p is
false all the way back from j to an occurrence of q or to the beginning of the computation.
This implies that whenever a -,p-position is preceded by a p-position, there exists a q-
position separating the two (possibly coinciding with either).

The following is a list of several safety formulas that are valid over program ANY-Y
and therefore specify properties of this program

• (y >_ 0)
This formula claims that y is nonnegative in all states appearing in computations
of ANY-Y.

r :(at-12 -- z X 1)
This formula, that can also be rewritten as at - 2 -.ý-(x 1). claims that x = I in
every state appearing in computations of ANY-Y at which control is at t2.

at -to . - at-to,, W(x # 0)
This waiting-for formula claims that, starting at any state in which control is at in.
contrc•l within process P, is continuouslv at 1(o or tj either forever or until X differs
from 0.

Response Properties

l{rsponse properties are those that can be expressed by a formula

p .- q



for past formulas p and q. In this paper, we will mainly consider the case that p and q
are state formulas.

For example, the response formula G =:ý- o(at-t2 A at-ml) is valid over program
ANY-Y. It claims that every state satisfying the initial condition ( : at-l A at-Mo A z =
0 A y = 0 is followed by a terminal state characterized by att 2 /A, at-m 1 . This implies
that all computations of ANY-Y eventually terminate.

2.6 Verifying Safety Properties

We present several proof rules for establishing the P-validity of a safety formula. From
now on, we fix our attention on a particular program P, specified by the componentsý v,,T, 7,' c).

Verification Conditions

For a transition r and state formulas p and q, we define the verification condition of T,
relative to p and q, denoted {p}r{q}, to be the implication:

(p,,- A p) - q',

where p,. is the transition relation corresponding to r, and q', the primed version of the
assertion q, is obtained from q by replacing each variable occurring in q by its primed
version. Since p,. holds for two states s and s' iff s' is a r-successor of s, and q' states that
q holds on s', it is not difficult to see that

if the verification condition {p}r{q} is valid, then every 7--successor of a p-state
is a q-state.

For a set of transitions T C T, we denote by {p}T{q} the conjunction of verification
conditions, containing the conjunct {p}r{q} for each r E T.

In the context of program ANY-Y, consider for example the verification condition of
t, (i.e., transition Ti, ), with respect to assertions y > 0 and y > 0:

{Y > 0} e11{ f > 0}.
Expanding the definition of the verification condition, this yields

t• C-?r A7r' = {r-tU{fo} Ax'= xAy'=y+ l A y > O --4 y' >

Pt1  P q

which is assertionaliv did, This shows that every e1 -successor of a state satisfying y
satisfies y > 0.

The Initialitv Rule

Obviously, the initial condition 9 holds at the first position of every computation of P.
Consequently, (- is a P-valid formula. It is useful to cast this fact in the form of a rule.
to which we refer as the inittaity rule INIT.
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INIT E)

The rule states that if E entails -0, i.e., imphes V at any position, then 1P is P-valid. In
this and subsequent rules we employ the convention that a line containing a temporal

formula states its P-validity.
It is possible to have a version of the INIT rule in which the premise is the implication

e -- i, rather than the entailment E =) . 4. For our use here, the entailment is more
convenient.

Rule INIT enables us to infer for program ANY-Y the property

<>(at-1 2 A at-mr)

from the entailment

7r = {to,mo} Az = O A y = 0 = 0(at 2 A at_Lmi)

As shown by this example, which deals with a response property, rule INIT is not
restricted to proofs of safety properties. We have presented it here since it is one of the
most basic rules and should be considered first.

A Waiting-For Rule

The following rule can be used to establish the P-validity of the waiting-for formula
p W- p W q for assertions p, 'P, and q, over a given program P.

WAIT W1. p - (q V ,O)

W2. {SOT{qV'P}
p =z- ýOP)Vq

This rule contains two premises, which are state formulas, and a temporal conclusion.
By our common convention, a line (premise or conclusion) containing a state formula r

claims that r is P-state valid while, as previously explained, a line containing a temporal

formula 7P claims that V) is P-valid.

Premise W1 of the rule claims that any p-state satisfies q or 'P. Premise W2 claims
that any successor of a 'P-state satisfies q or W. Together, they imply that any p-position

in a computation of P initializes a sequence of 'O-positions which either extends to infinity

or is terminated by a q position. This shows that p ='- P W q holds over all computations

of P.

Example 1 Let us apply rule WAIT to establish the property

X =0 (X = z0) W (Xz 1)

for program ANY-Y.

12



Clearly, we apply rule WAIT with p = •: z = 0 and q: z = 1.
Premise WI assumes the form

X=O -+z=lVx=O

which is obviously valid.

Premise W2 represents a set of verification conditions

p, Ax=0 -4x' =1Vx'=0,

for r ranging over - rt,, r7 1,, and r,,,. In principle, we should check each of these four

conditions separately. However, as is often the case, many of these transitions can be

seen to trivially satisfy the verification condition since they do not modify X. Formally,

the transition relation for these transitions contains the conjunct z' = z, leading to the

obvious validity

S..x' A x--0 - x =0,

Thus, we only need to consider transitions that modify z. This leaves transition M 0 ,

whose verification condition can be written as

A..Ax'=1 Ax=0 - x' =V--,

which is obviously valid. This establishes the property z = 0 4- (z = )W (z = 1) as

valid over program ANY-Y.

Monotonicity of Waiting-For Formulas

All the temporal operators are monotonic with respect to implication of state formulas.

This means that if p --+ q and ®p are both valid then so is ®q, where ® stands for any of

the unary temporal operators and p, q are state formulas. Similar monotonicity properties

hold for each argument of the binary temporal operators.
This enables inference of a new waiting-for formula from a previously established

formula by appropriate weakening and strengthening of the assertions appearing in the
formula. The precise premises are listed in rule W-MON.

W-MON p io Wq
p,--4 p, q-•' q _q

p ,- I P'Wq'

Using this rule, we can infer the property att-mo A = 0 =t- (z < 1) W (x - 1) for
program ANY-Y from the previously established x = 0 =- (x = 0) W (x = 1), using the

state validities

atmo A z = -0 x = 0

xz= -- x<I

The combination of rules WAIT and W-MON is complete for proving the P-validity of

any waiting-for formula p W p W q for assertions p, P, and q JMP83].
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Case Splitting

It often happens that the assertion Wo appearing in rule WAIT naturally splits into a
disjunction:

iEM

where M is some finite index range, e.g., M = {1,... ,m}. In this case, it may be easier
to prove premises W1 and W2 of the rule in the form:

WI. p q V Vi for someiEM

W2. {Qo,} T {q V '0} for every i E M

Consider a proof of the property

at•• 0 A = 0 - (at-o,1 A x = 0) W (x = 1)

for program ANY-Y. In this case ýP : at-to,1 A x = 0 naturally splits into the disjunction
Wo V ýP1 , where

('o: at-to A x = 0

ý01 :at-1 A x = 0.
In proving premise W1, it is simpler to prove atl-o A x = 0 -+ Wo.

In proving W2, it is easier to consider separately the cases of Vo and w, . This is
because we may summarize the effects of the various transitions on a P0-state by the
following table:

Transition Successor State
71 satisfies W:o

to satisfies V1

t, no successor
mo satisfies q : x 1

Note that transition 11 is disabled on P0o and therefore the verification condition {c1o}41{f,}
holds trivially for an arbitrary V;.

The effects of transitions on a 'P1-state are summarized in the following table:

Transition Successor State
r, satisfies W,

to no successor
11 satisfies W'o

m 0  satisfies q : z = 1

Together, these two tables (with the associated formal proofs) establish premise W2.

I1,1



Proof Diagrams for Waiting-For Formulas

As we become more experienced in conducting proofs according to rule WAIT and similar
rules, proofs need not be presented with full formal detail. However, identification of the
structure of the verification conditions and how transitions way lead from a state satisfying
some ýOj into a state satisfying some Pj is helpful in increasing confidence in the correctness
of the proof. In the preceding discussion we illustrated how this information can be
represented by tables. Here we will introduce another representation of this information,
provided by proof diagrams.

A proof diagram is a directed graph consisting of a finite set of nodes N and a set of
directed edges E connecting the nodes. Each node ni is labeled by an assertion •, and
each edge is labeled with the name of a transition.

Two subsets of nodes are identified: I C N, the set of initzal nodes, and F C N.
the set of terminal nodes. We denote by M = N - F the set of nonterminal nodes An
example of a proof diagram is presented in Fig. 2. This diagram consists of three nodes

o0 at_1(oAx-- 0 ý01" at-11 'z-=O

n22
mr0  0

Figure 2: A proof diagram.

no, nI, and n2. There is one initial node I {no} and one terminal node F f{n 2}.

Initial nodes are graphically identified by the annotation *') while terminal nodes are

identified by L.
If node n1 is connected to node nj by an edge labeled by r, we say that nj is a

r-successor of n,,
A proof diagram is defined to be sound if, for every nonterminal node n ' Al labeled

by assertion "P and every transition r - 'T:

* If nA, • .nk are all the r-successors of n for some k > 0, then tile verification ccndi-
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tion

{P}r {V O}
i=1

is assertionally valid.

* If n has no r-successor then the verification condition

{P} T {P}

is assertionally valid.

According to this definition, a node n that has no r-successor is the same as a node n
having a self-connecting edge labeled by r.

It is obvious that a sound proof diagram identifies a set of verification conditions that
can serve as the premises to rule WAIT. Indeed, we have the following claim.

Claim 1 A sound proof diagram establishes the P-validity of the formula'

V •, • (V SO,) W (V ý,)
iEI iEM iEF

It is not difficult to show that the premises of rule WAIT for the choice

P: V , (: V w,, q: V w
iEI iEM iC-F

follow from the soundness of the proof diagram.
Premise W1 requires showing

V •,--" (V W')v( V W,).
•EI iEF ZEM

This follows from the fact that I C (F U M) = N.
Premise W2 requires showing, for each node nj E M labeled by Wj and each transition

r E T, the validity of the verification condition

{S%} r { V w',}.
iE FuM

However, this follows immediately from the soundness of the proof diagram.

To simplify the notation, we will often write W0 K as an abbreviation for the disjunction

V ýOj
zEK

for any K C N. With this notation, the conclusion of Claim I can be rewritten as

•°x M W W-.

'Note the abuse of notation by which we use I, M, and F to denote sets of nodes as well as sets of
the indices of these nodes. We hope that the ensuing ambiguity can always be resolved by the context.

163



To increase our proving power, we often combine proof diagrams with monotonicity
arguments.

It is not difficult to see that the diagram presented in Fig 2 is sound for program
ANY-Y. This establishes the validity of the formula

atoAx =0 - - ((attoAx 0)V(atj AT =0)) W(M = 1)

over program ANY-Y. Note that this formula is equivalent to

at-toAz=0 •- (atoAz=O) W4x(z=l).

We define a proof diagram D to be valid with respect to assertions p, io, and q if D is
sound and the following implications are assertionally valid:

p ---+ V '• ,{V •',) '- ý', V ',) '- q.
iEl iEM iEF

Combining claim 1 with monotonicity, we obtain the following corollary:

Corollary 1 If diagram D is valid with respect to assertions p, P, and q, then the formula

p =ý (PWq

is P-valid.

Consider the sound diagram of Fig. 2 and the assertions

p: {9, 1P : atJ10 ,1, q: zx 0.

The required monotonicity conditions for these three assertions are

E) -- at-loAx=O

(at-1o Ax = O) V (at.11 A z = O) - at-to,

X=I --* z#0

All three are valid. It follows that the diagram of Fig. 2 is valid with respect to this choice
of p, 'P, and q, and therefore that the formula

0 =ý- (atto,)W(x#0)

is valid over program ANY-Y,

Statechart Conventions

There are several conventions inspired by the visual language of statecharts [Har87] that
improve the presentation and readability of proof diagrams. We extend the notion of a
directed graph into a structured directed graph by allowing compound nodes that may
encapsulate other nodes, and edges that may depart or arrive at compound nodes. A
node that does not encapsulate other nodes is called a basic node. The role of compound
nodes in a structured proof diagram is to provide a more succinct representation of the
assertions labeling the basic nodes and the edges (labeled by transitions) that connect
them.

We use the following conventions:

17



"* Labels of compound nodes: a diagram containing a compound node n, labeled
by an assertion Wo and encapsulating nodes nl,... ,nk with assertions 'o .... ,_ W, is
equivalent to a diagram in which n is unlabeled and nodes nl,. .. , nr, are labeled by
W, A ^,.o, ., Pk A ro. This convention allows us to factor out a conjunct common to
the encapsulated nodes and place it as a label of the compound node.

GD P=Aý

"* Edges entering and exiting compound nodes: a diagram containing an edge e con-
necting node A to a compound node n encapsulating nodes nl,..., nk is equivalent
to a diagram in which there is an edge connecting A to each n,, i = 1,..., k, with
the same label as e. Similarly, an edge e connecting the compound node n to node
B is the same as having a separate edge connecting each ni, i = 1, ... , k, to B with
the same label as e. These equivalences are illustrated in Fig. 3.

A A

r 2  r2

Figure 3: Edges entering and exiting compound nodes.

"* Compound nodes designated as initial and terminal nodes: a diagram in which a
compound node n is designated as an initzal (respectively, terminal) node is the

10



same as having all the nodes encapsulated by n designated as initial (respectively,
terminal). These equivalences are illustrated in Fig. 4.

0=0
0 0

0 --y*

Figure 4: Initial and terminal compound nodes.

With these conventions we can redraw the proof diagram of Fig. 2 as shown in Fig. 5.
Note that the common conjunct x = 0 has been factored out of nodes no and ni and now

no n ,

Figure 5: A structured proof diagram.

appears as the label of the compound node encapsulating them.
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A Rule for Invariance Formulas

Our approach to proving invariance formulas of the form ow for a state formula po, is
based on the congruence

Co -_ PWF.

Consider rule WAIT for the special case that p is taken to be (9 while q is taken to
be F. The conclusion for this case is E) =t- WO W F, which is congruent to 0 =ý- C3ý.
Invoking rule INIT, we may infer n'o as a P-valid conclusion. Consequently, simplifying
the premises, we obtain the following rule for proving invariance formulas.

INV 11. 0 -- +V
12. {J-}Tf-p

Rule INV states the obvious fact that if assertion (P is implied by the initial condition and
preserved by any transition of the program, then it is an invariant of the program, i.e.,
holds on all P-accessible states.

Let us illustrate the application of rule INV for proving the property 0(y > 0) for
program ANY-Y. Clearly, WP is taken to be y > 0. Premise I1 for this case is

A .y =0 ---, y>_0

which is obviously valid. For premise 12, we consider first the verification condition for
transition L1

A .. Ay'=y+1 Ay>0 -- y'>0

P 11

which is also valid. All other transitions preserve the value of y and therefore trivially
preserveP : y> 0.

Monotonicity of Invariance Formulas

Invariance formulas are also monotonic with respect to the assertion claimed to be invari-
ant. This is expressed by the following rule I-MON.

I-MON O'P

W _+'P I

Using this rule, we can infer the property u(x > 0) from a previous proof of the invariance
,(x = 0 V x = 1) (valid for program ANY-Y) and the state validity

(X-0Vz ==1) , X>0.

The combination of rules INV and I-MON is complete for proving the P-validity of any
invariance formula cop for assertion p tMP91a].
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Proof Diagrams for Invariance

Since, as previously shown, invariance formulas are a special case of waiting-for formulas,
it is not surprising that their proof can also be conveniently represented by proof diagrams.

A proof diagram D is defined to be invariance-sound if

* D is sound (in the sense defined for waiting-for diagrams).

o There are no terminal nodes, i.e., F = and therefore M = N. This reflects the
fact that q = F.

.0 -

Incorporating monotorucity, diagram D is said to be invariance-valid with respect to P
if it is invariance-sound (satisfies the three requirements listed above) and, in addition,
satisfies

0 PM -- -

The following claim summarizes the use of invariance-valid diagrams.

Claim 2 If diagram D is invariance-valid with respect to assertion 'P, then the formula

13'p

is P-valid.

As an example, we present in Fig. 6 a proof diagram that is invariance-vald over
program ANY-Y with respect to 'P : at_12 -' X = 1. It is not difficult to verify that the
diagram of Fig. 6 is sound. One of the important steps in this verification observes that
transition to is disabled on node nj, while transition 11 is disabled on no. Therefore, to
trivially preserves W, : at-A = OAA-at1 2 , while tj preserves P0 : at- 0otAz = 0A -.at-1 2.
It is also evident that this diagram has no final nodes. Invariance-soundness is completed
by checking the obviously valid implication

r ={to,mo}A x A-.- -A-- at-to Ax=OA -ati 2 .

Validity with respect to atA -2 z x , which can also be written as ý-at 12 'V' x = 1.
follows from the implication

(at-toAx =OA-at-1.) V (atji Ae =A 0A -at_12) V (Xzz 1) -- -'at- 2 V X = I

'PM: 'Pov, 'aVP 2

The same property can also be established by the simpler diagram

A -.at =12

21



Sx =0 A - at_ 12 o"

'P2 Z =l

Figure 6: An invariance proof diagram.

2.7 Verifying Response Properties

Here we consider rules (and diagrams) for verifying the validity of a response formula
p =: 0 q for the case that p and q are assertions.

The basic response rule RESP relies on a helpful transition -rh whose activation accom-
plishes the goal q in one helpful step. It also uses an auxiliary assertion V, characterizing
the situation between the occurrence of p and the occurrence of q.

RESP Ri. p =- (qV V)

R2. {'P}T7 -{frh}{fq V ýO
R3. {50} Th {q)

R4. 'P =-(q VEn(Th))
p q~

Premise R1 ensures that p entails q or ý'. Premise R2 states that any transition of the
program, excluding -r', either leads from ýo to q, or preserves V. Premise R3 states that
the helpful transition -r, leads from W to q. Premise R4 ensures that Th is enabled on
any 'P-state that does not satisfy q. It is not difficult to see that if p happens, but is not
followed by a q, then ' must hold continuously beyond this point, and rh is not taken.
However, due to R4, this means that rh is continuously enabled but never taken, which
violates the requirement of justice with respect to rh. Consequently, any occurrence of p
must be followed by an occurrence of q.

We illustrate the use of rule RESP for proving the response property

(It -m o =:,- "ýo (X= I

for program ANY-Y
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As the helpful transition rh we take ion. As the intermediate assertion 'o we take
p: atmto. Premise R1 assumes the form

at.moo -. V attmo

P'
which is obviousl) valid. Premise R2 requires : ,hwing that all transitions, excluding ino,

preserve P : attom which is clearly the case.
Premise R3 requires showing that m0 leads from any 'O-state to a q-state, expressed

by
.. x = 1A-'" --+ =

which is obviously valid. Finally, R4 requires

at-mo -* V atmo,

'P Eri(mo)

which is also valid. This establishes that the response property at-mo=0 -O (z 1) is
valid over program ANY-Y.

Combining Response Properties

Not all response properties are achieved by a single activation of a helpful transition. In
general, several helpful steps are necessary. In this subsection, we present several rules
that may be used to combine single-step response properties into more complex response
properties.

First, we list two basic rules, which express the monotonicity and transitivity of re-
sponse properties.

R-MON p=.- , q R-TRANS pz=ý-cOq
p -* p , q -- q' qz--*- r

p I =:- 0 q1 p =t- < r

The last rule for response is R-CASE, which allows proofs by case analysis.

R-CASE p='- q

(p Vr)r -C>

We will illustrate the use of these rules by proving termination of program ANY-Y, ex-
pressible by

c(at -1 A at-m 1 ).

The proof consists of the following steps:

1. at-foAatmo Ax x 0 =:- (>(at-1o, 1Aat-mlmAx x )
by rule RESP, taking rA : -n and 'o : at-to,1 A at-tom A x -2 0

2. at-oA ataml A x I =- /> '(att 2 Aat- rml)

by rule RESP, taking rh : to and P at-to A atr m z x 1

3. at__ f A at-m1 AI 2 1 =; <>(at-to Aat -m Ax = 1)

by rule RFSP, taking 7h : tA and P: at- 11 A at-rl A x 1

23
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4. at-1 1 A at-ml Az 1 =x Q (at-1 2 A at-.ml)

by rule R-TRANS, applied to 3 and 2

5. (at-to Aat-m Ax 1) V (at 1 i A at-ml Ax= 1) =ý- (Iat- 'at -mI)

by rule R-CASE, applied to 2 and 4

6. at-to,1 A atm Az i --, (at-o atrat - a 1)V (atJ at. - ; x 1)
an assertional validitv

7. at-to,1 A ai-m Ax 1 =- (at- 2 A at-m 1 )
by rule R-MON, using 5 and 6

8. at-ioA at-moAz = 0 => O(at_12 A at-m 1 )
by rule R-TRANS, applied to 1 and 7

9. 0 -e at-to A atamo Ax = 0

an assertional validitv

10. E = ý,, '(atJ2 A at-m 1 )

by rule R-MON, applied to 8 and 9
11. <>(at-12 A at-n,)

by rule INIT, applied to 10

The combination of rules RESP, R-MON, R-TRANS, and R-CASE with well-founded induc-
tion is complete for proving the P-validity of any response formula p=z- q for assertions

p and q IMP91a'.

Proof Diagrams for Response

As seen in the previous proof, it is often the case that a proof of a response property
involves several applications of rule RESP. Such a proof can be conveniently represented
in the form of a response proof diagram.

A response diagram is a proof diagram in which some of the edges are drawn in a
special tont. In this paper, we draw them as dotted lines. We refer to such edges as the

helpful edges. They correspond to the helpful transitions.

A response diagram D is defined to be response-sound if it satisfies

"* D is sound, i.e., it satisfies all the verification conditions.

"* Every non-terminal node n, G M has a helpful edge departing from it.

"* The graph of D is acyclic, i.e., D contains no cycle.

"• If the helpful edge departing from n, E M is labeled by transition r, then

, --. En(7)

is valid. This condition corresponds to premise R4 of rule RESP.

A response diagram is response-valhd with respect to assertions p and q if it is response.
sound and the following two implications are assertionally valid

p --

F q

"The following ,laii• surnmarizes the usc of response- valid diagrams
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Claim 3 If diagram D is response-valid with respect to assertions p and q, then the
formula

p z,- q

zs P-valid.

In Fig. 7 we present a response diagram that is response-valid over program ANY-Y
with respect to p 0 and q at.12 A at.m 1 . It is not difficult to check that this diagram

at-to A at-rmo A x 0

Smo

at-ml A x 1

( ~at_- j
;9

at to ".

Sto

att 2 A at-ml

Figure 7: A response proof diagram.

is sound, i.e., satisfies all the verification conditions. It is obviously acyclic, and every
M-node (i.e., every node except the final one), has a helpful edge departing from it.

It is also straightforward to check that mo is enabled on any state satisfying the
assertion at-toj A at-mo A x = 0, 11 is enabled on any state satisfying at-tI, and t o is
enabled on any state satisfying at-to A at-m 1 A x = 1.

Finally, to check validity with respect to G and at t2 A at -ml, we observe the state
validity

at-to A a-moo A x = 0 A y = 0 --* at_ o,, A atmo A z = 0

and the fact that PF is at-t 2 A at-m l .
We may conclude from the diagram that the response property

0- ný' <(at_12 A at-mi)

is valid for program ANY-Y. By rule INIT, we may conclude that ANY-Y always terminates-
It is interesting to note that each helpful edge corresponds to a single application of

rule RESP in the previously presented deductive proof of the same property, i.e , steps 1.
2, and 3 in the proof.
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3 Real-Time Systems

The next model we consider introduces the metric aspect of time, and provides a measure
for the time-distance between events as well as for the duration of activities in the system.

The specific model we present here was introduced and discussed in [HMP911, [HMP921.
A closely related model was presented in [AL921. Many of the Process Algebra extensions
to real-time, such as [NSY921, [MT901, and many others listed in [Sif9l1, are based on
very similar assumptions.

3.1 Computational Model: Timed Transition System

As the time domain we take the nonnegative reals R+. In some cases, we also need its
extension R' = R+ U {oo}.

A timed transition system (TTS) S = (V, E, T, 1, u) consists of the following compo-
nents:

9 V = {ul, ... , u,,} : A finite set of state variables. A state is any type consistent
interpretation of V. The set of all states is denoted by E.

* : The initial condition. A satisfiable assertion characterizing the initial states.

* T : A finite set of transitions. Each transition r E T is a function

r : E' ý-42E,

defined by a transition relation p,(V, V').

* A minimal delay 1, E R+ (also called lower bound) for every transition r E T.

o A maximal delay u,- E Roo (also called upper bound) for every transition T E T. It
is required that u,- > 1 for all r C T.

Note that, in going from a fair transition system to a timed transition system, we elimi-
nate the fairness related components of justice and compassion and replace them by the
specification of lower and upper bounds.

We introduce a special variable T, sometimes called the clock variable. At any point
in an execution of a system, T has a value over R+ representing the current time. The
set of variables VT= V U {T} is called the set of situation variables. A type consistent
interpretation of VT is called a situation, and the set of all situations is denoted bv !T.
Often, we represent a situation as a pair (s, t) where s is a state and t E R- is the
interpretation of the clock T.

To simplify the formalism, we assume that all transitions are self disabling. This means
that no transition r E T can be applied twice in succession to any state, implying that r
is disabled on any r-successor of any state, i.e., r(r(s)) = 0 for any s. Consequently, we'
exclude the idling transition r, from timed transition systems.
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Computations

A computation of a timed transition system is an infinite sequence of situations

( (So,tO), (sitl), (s2 ,t 2), ...

satisfying:

"* Initiation: sO - 9 and to = 0.

"* Consecution: For each y = 0, 1,

- Either t, = tj+l and sj+l E r(sj) for some transition r E T, or

- sj = s3 +j and tj < tj+1 . We refer to this step as a tick step, implying that time
has progressed.

"* L.)wer bound: For every transition r E T and position j > 0, if r is taken at
j, there exists a position i, i < j, such that t + , < tj and 7 is enabled on
Si, Si+i,. .. ,s•.

This implies that r must be continuously enabled for at least 1,. time units before it
can be taken.

" Upper bound: For every transition r E T and position i > 0, if r is enabled at
position i, there exists a position j, i < j, such that t, + u, > tj and r is disabled
on si.

In other words, r cannot be continuously enabled for more than u, time units
without being taken.

"* Time Divergence: As i increases, ti grows beyond any bound.

Unlike the untimed case, it is not necessary to require that every state has at least one
transition enabled on it. This is because, even if all transitions are disabled, we can
always take tick steps which ensures that all computations are infinite. Consequently, we
no longer need the idling transition and its removal causes no harm.

The upper bound requirement claims an equivalence between the formal condition
that -r is disabled on sj, for some j > i, ti + u,. > tj, and the intended requirement that
r cannot be continuously enabled for more than u, time units without being taken. This
equivalence holds only due to the assumption that transitions are self disbaling. Without
this assumption, we would have to require that there exists some ' > i, tj + u, > tj,

such that either -r is disabled on si or r is taken at position j - 1. The simplification
resulting from the self-disabling assumption becomes significant when we express the

formal condition as a formula.
As shown in [HMP91], the model of timed transition systems is expressive enough

to capture most of the features specific to real-time programs such as delays, timeouts,
preemption, interrupts and multi-programming scheduling.

Example

Consider the simple timed transition system given bv:
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* State Variables V: {z,yl.

* Initial Condition: 0 : (z = 0) A (y = 0).

* Transitions: T : {Trorl,Tr2} where

ro (y =0) A ven(z) A(x' = x+1 1 2
r1  (y=o0)A odd(z) A(x' =x+1) 1 2
7T2 (y=0) A(y'=1) 3 3

The predicates even(z) and odd(x) test whether the value of x is even or odd, respectively.
We present two computations of this timed transition system. The first computation

al attempts to let z reach its maximal possible value. Therefore, we always try to activate
ro and r, at the first possible position and r2, which causes all three transitions to become
disabled, as late as possible.

0, 0:,:OT:0) tick 0,0•• -i-1,kT' tic

(z:l,y:0,T:2) 2 (x:2, y:0,T:2)t-i (: 2, y0 T:3) .-
:z 3, y:0, T: 3) (x- (z 3,y 1 ,T:-3),," ..

Note that transition -r0 cannot be taken before T > 1 and, after it is taken, we must wait
one additional time unit before being able to take rl. Transition r2 must be taken before
time progresses beyond 3 in order to respect its upper bound.

The second computation a2 attempts to keep the value of z as low as possible. Con-
sequently, it delays the activation of ro to the latest possible position and tries to activate

r2 at the earliest possible position.

tick tick0-2 : ýx '0, y '0, T 'O) --• '0, y:0,T : 2)--- 1z ,y :0,T :2) ,__

ýx -1, y '0, T :3) 1-,- ( l y 'l, T : 3) " •___ . .

We say that a transition r is ripe at position j if it has been continuously enabled for
u. time units.

There are several observations that can be made concerning the computational model
of timed transition systems.

"* Computations alternate between tick steps that advance the clock by a positive
amount and (possibly empty) sequences of state-changing transitions that take zero
time.

"* Transitions mature together but ezecute separately in an interleaving manner.

"* Time can progress only after all ripe transitions are taken or become disabled.

" When time progresses, it can jump forward only by an amount on which all the
enabled transitions agree. That is, it must be such that it will not cause any enabled
transition to become "over-ripe."
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The requirement of time divergence excludes Zeno computations in which there are in-
finitely many state-changes within a finite time interval [AL92J. Unfortunately, not eveiy
timed transition system is guaranteed to have computations that satisfy all the require-
ments given above.

Consider, for example, a TTS with a state variable z, initial condition z = I and two
transitions r, and r 2 whose transition relations and time bounds are given by7 Pr 1. 1. , i

Sx> 0 A > z' =-X 0 0

r2 x<0 A = -z 0 0

This TTS does not have a computation. This is because one of Tj or r2 is always enabled
(and ripe) and does not allow time to progress.

A transition whose maximal delay is 0 is called an immediate transition. Let To denote
the set of all immediate transitions. A Zeno sequence is an infinite sequence of states
sosl,..., such that, for every i = 0, 1,..., there exists a r E To such that s,+l E r(s,).
The existence of such a sequence may cause the requirement of time divergence to be
violated, since time cannot progress until all enabled immediate transitions are taken

and, if there are infinitely many of them, time will never progress.
A TTS is called progressive if it cannot generate a Zeno sequence. Progressive systems

cannot, have an infinite chain of immediate transitions and are, therefore, guaranteed to

have at least one computation.

From now on, we restrict our attention to progressive transition systems.

3.2 System Description by Timed Statecharts

A very convenient specification of timed systems can be obtained by extending the visual
notation of statecharts [Har87] by annotating each transition with a pair of numbers !1, u],
denoting the lower and upper time bounds of that transition. As an example, we present

in Fig. 8 a timed specification of a producer-consumer system.
The diagram consists of two processes (automata): Prod and Cons, which operate

concurrently. Process Prod represents a producer that produces a positive value in X and
places it in the buffer variable b. Process Cons waits for b to become positive and then
copies b to its working variable y while resetting b to 0.

A label of a transition in this statechart specification has the form

name: c/assignment,

where name is an optional name of the transition (with no semantic meaning), c is a
triggering condition which causes the transition to become enabled, and assignment is an
optional assignment which is executed when the transition is taken. When the transition
has the trivial triggering condition T, such as transition 11 in the diagram, we omit the
separator '/' from the label. In this case, the transition is enabled whenever the state

from which it departs (state produce in the diagram) is active.
In addition, each transition is optionally labeled by a pair of real numbers '1, u, which

specify the minimal and maximal delays of the transition. Transitions that are not ex-

plicitly labeled are considered to be immediate, i.e., to have the time bounds {0, 0'!
In the description of Fig. 8, states produce and consume are identified as taking time.

"This is seen by the fact that the transitions departing from these states have time bounds.
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Initially x = b = y = 0.

/Prod 11 : X := produced-value "

12: (b,X):=(,,0)

Cons mi" b > 0/(y,b):= (b,0)

[12, U21

k: z>OAb>0

C Error D

Figure 8: PROD-CONS: A producer consumer system.

On the other hand, states send and receive are described as immediate, and can be exited
as soon as the transitions departing from them are enabled.

In the example presented here, the two concurrent processes communicate by the
shared variable b.

The diagram contains a transition k leading from the compound state Norn._ý to state
Error. This transition identifies an error state occurring when the producer is at state
send, ready to send its next produced value (and hence z > 0), while the buffer is still
occupied b > 0. Obviously, if the producer were to proceed, the value currently stored in
b would be lost.

An interesting analysis question one would like to address in this situation is the
conditions under which state Error is guaranteed to be unreachable. A simple calculation
implies that

Li > U 2

is a sufficient condition for the unreachability of Error. This is because two consecutive
executions of transition 42 which assigns a positive value to b, must be separated by at
least 11 time units. Assuming that the first assignment caused process Cons to move from
state receive to state consume, it will return to state receive within at most u2 - 11 time

units. Thus, when b is assigned a new value by 12, Cons is already waiting at state receive
with y = 0.

The associated formal question is how can this fact be proven formally- In the sequel
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we discuss an approach to the verification of such statements.

Timed Statecharts as a TTS

While we refer the reader to [KP92b] for a full definition of the semantics of timed stat-
echarts, we show here how statechart PROD-CONS of Fig. 8 can be viewed as a timed
transition system.

As we see in the diagram, a statechart contains basic states which do not contain
other states and compound states which do. For example, states produce, send, receive,
consume, and Error in statechart PROD-CONS are basic, while states Prod, Cons, and
Normal are compound. We refer to the direct descendants of a compound state as its
children. Thus, the children of state Prod are produce and send, the children of Cons are
receive and consume, and the children of Normal are Prod and Cons. States Prod and
Cons are (exclusive) or-states. A basic state is considered active if the system is currently
at this state. An or-state is active if precisely one of its children is active. State Normal,
on the other hand, is an and-state. An and-state is active if all of its children are active.
Or- and and-states correspond to sequential and parallel composition of their children,
respectively.

Following is the identification of the constituents of the timed transition system cor-
responding to statechart PROD-CONS.

"* State Variables: As state variables we take the control variable 7r and the integer
data variables x, b, and y. Variable r ranges over subsets of the basic states produce,
send, receive, consume, and Error.

"* Initial Condition: given by

0 :r ={produce, receive} A z = b = y = 0.

" Transitions, lower and upper bounds: are listed in the following table. For simplic-
ity, we omitted all conjuncts of the form u' = u for any state variable u.

T P-r fU,.

I produce E ir A 7r' = 7r - {produce} U {send} A x' > 0 , I
42 send E7r A r'= r- {send}U{produce} A b' = x A x ' = 0 0 10
m, receive E ir A b > 0 A 7r'= 7r - {receive} U {consume}

Ay' =b A b'= 010 0

M 2 consume E 7r A 7r = ir - { consume} U {receive} A y' 0 12 U2
k (Normalnf7r)4 A x>0 /N b>0 A T'= 7r-Normalu{Error} 0 0

Note that transition t1 takes any positive value as a "produced value." The set Normal,
appearing in the relation for transition k, stands for {produce, send, receive, consume}.

Timed Extension of the Textual Language

In the previous section (subsec.Ion 2.2), we introduced the simple programming language
SPL for the qualitative model. What extensions, if any, are necessary to deal with real-
time?
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On the lowest level, very few extensions are necessary. At the minimum, it is only
necessary to assign time bounds to the transitions associated with statements of the
program. For example, we can assign uniform time bounds 1, = L and u, = U to every
transition. As mentioned earlier, the set of transitions associated with a real-time program
no longer includes the idling transition 7,.

It is obvious that with this time bounds assignment each SPL program can be viewed
as a TTS.

With this timing assignment, we may reconsider a program such as ANY-Y and claim
for it some stronger properties. For example, the property of termination can now be
quantified by saying that the program terminates within 3 . U time units. In the following
subsect :ons we will show how such properties are specified and verified.

However, we may become more ambitious and attempt to describe within SPL a system
such as the producer-consumer system presented in Fig. 8. To do so, we have to extend
SPL by additional statements. We refer the reader again to [KP92b] where such extensions
are discussed.

To distinguish between the interpretation of a program P as a fair transition system
and its interpretation as a timed transition system (when provided time bounds for its
transitions), we denote the latter as PT. For example, the property of termination within
3 . U time units is valid for ANY-YT but not for program ANY-Y. This property is actually
meaningless for ANY-Y, whose computations as a fair transition system do not contain
any timing information.

3.3 Requirement Specification Languages

To specify properties of timed systems, we use the language of temporal logic with appro-
priate extensions. There have been several proposals for such extensions. Here we present
only two of them.

To inspect the utility of these languages, we will demonstrate their ability to specify
two important timed properties:

"* Bounded response: Every p should be followed by an occurrence of a q, not later
than d time units.

"* Minimal separation: No q can occur earlier than d time units after an occurrence
of p.

Metric Temporal Logic (MTL)

One approach to the specification of timing properties presented in iHMP91i introduces
a bounded version of each temporal operator (excluding 0 and 0) obtained by sub-
scripting the operator by an interval specification I. An interval specification may have
one of the forms

{1, u ! 11, ,t) (1,u i (1, ,,).

In the first form, it is required that I < u, while in the others 1 < u. The semantic
meaning of these bounded operators is straightforward. For example. p 4(,,,q holds at
position i of a timed computation a : (So' to), (si, t,. _ iff there exists a j, z1 < J, such
that t, + I < tj < t, 4 u, q holds at j, and for all k, iZ " k < j,p holds at k.
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We often use abbreviations such as 0<,, and 0 <,, to stand for ofo,,) and C (0'.)
This approach to the specification of timing properties has been advocated in 'KVdR83],

[KdR85], and [Koy90], although an early proposal in [BH81] can be viewed as a precursor
to this specification style.

Metric temporal logic can easily specify the properties of bounded response and min-
imal separation.

* Bounded response: p = 0- C <d q.

* Minimal separation: p =,- o<d -'q.

Temporal Logic with Age

Another approach to the specification of timed properties introduces a temporal function
F(io), called the age of the formula 'P. The age function measures the length of the largest
interval, extending through the past to the present, in which W' has been continuously
true. More precisely, the value of I(o) at position j in a computation a is defined to be

* the largest t such that, for some i < j, t = tj- t and ýO holds at all positions i,... J.

or

* 0 if V does not hold at position j.

We denote by TLr the logic obtained by extending temporal logic with the age function.
Note that the value of r(true) at situation (si, ti) is always ti, the current value of the
clock variable T. Consequently, we allow formulas in rLr to refer explicitly to the clock
variable T. In this respect, TLr can be viewed as an extension of the Ezplicit Clock
Temporal Logic considered, for example, in [PH88], [HLP90, and fOst9O].

In one style of specification, we can specify the two yardstick properties using only
references to T but not to r.

* Bounded response: p A T=t0 to o(q A T<t0 +d).

9 Minimal separation: p A T = to o (T <t 0 + d - -q).

Another style of specification uses the age function but does not refer directly to the clock
T.

* Bounded response: cfr((-q) S(p A -q)) •5 d].

* Minimal separation: q =- (a(-p) V F(-ip))> d).

The formula for bounded response uses the subformula (-q) S (pA-q), which characterizes
points of ungratified request, i.e., a position j that is preceded by an occurrence of p but
no matching q appears since then till j. The full formula states that periods of ungratified
request cannot extend more than d.

The formula for minimal separation claims that an occurrence of q must be preceded
by a p-free period that extends either to the beginning of the computation, or for at least
d time units.

An assertion that may refer to the clock variable T or contain age expressions of the
form ['(V'), where V, is an assertion, is called a timed assertion.
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3.4 Verification of MTL Formulas

There are several proof rules that have been proposed for proving properties specified
by MTL formulas. We refer the reader to [HMP91] and [Hen9l] for a deductive system
for such proofs. Here we will illustrate only a set of rules which is adequate for proving
bounded response properties.

There is a strong reseuiblance beLween the rules for bounded response and tile rules
for response, presented in subsection 2.7.

The basic response rule RESP relies on a helpful transition rh whose activation accom-
plishes the goal q in one helpful step. Let Uh denote the maximal delay associated with
rh.

B-RESP B1. pi =ý (qV')
B2. f P}T -f{rhj{q V ý0}
B3. {f} r-r {q}
B4. 'P =0 (q V En(Th))

p = <uq

The premises of rule B-RESP are identical to those of rule RESP, but the conclusion states
not only that every p is followed by a q but that q must occur within Uh time units. This
is because a p not followed by a q initiates a period in which rh is continuously enabled,
and such a period cannot extend for more than. Uh.

Consider program ANY-Y and assume that all transitions, excluding -r,, are assigned
the minimal delay I : 1 and the maximal delay u : 5. We refer to the resulting timed
program and its associated TTS as ANY-YT. Rule B-RESP can be used to prove the
bounded response property

at -mo =ý- 0_<s(z~l

In fact, no new proof is needed since we have established all the premises for this case in
subsection 2.7 while proving the untimed version of this property atmo=' (z 1).

Combining Bounded Response Properties

As in the untimed case, rule B-RESP is useful only for bounded response properties that
are achieved by a single activation of a helpful transition. We present here several rules
that may be used to combine single-step bounded response properties into more complex
bounded response properties.

The following two rules express the monotonicity and transitivity of bounded response
properties.

A
BR-MON p=!,- 0 <,q BR-TRANS p-•<,,,q

pq-- I q q qq <C>,r

Note that in combining bounded response within ul followed by a bounded response
within u2 , the resulting response has the upper bound ul + u2-

The last rule for bounded response is BR-CASE, which allows proofs by case analysis
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BR-CASE p <> q
r <>2

Note that if p ensures a response within u1 and r ensures a response within u2 , then the

best upper bound we can expect from a (p V r)-state is the maximum of ul and Us2 .

We will illustrate the use of these rules by proving termination of program ANY-YT
within 15 time units, expressible by

0 <5s(at-12 A at-ml).

The proof follows steps identical to those taken in the proof of untimed termination of
program ANY-Y, presented in subsection 2.7.

1. atto A at-mo A z= 0 =:'- 0 <>_s(at-o,j A at-ml A z=)
by rule B-RESP, taking rh : m0 and WP" at-Lo,j A at-mo A t = 0

2. atto A atmrn, A z = 1 0- ¢,<s(at_ 2 A at-m 1 )
by rule B-RESP, taking rh : to and W at-to A at-mr A x = 1

3. att 1 Aatam 1 Az= 1 =t- 0<s(at-toA at-nl Ax= 1)
by rule B-RESP, taking rh : I, and w at-l1 A at-m 1 A z = 1

4. at-t 1 A at.m 1 Az = 1 - <10io(at-12 A at.mr)
by rule BR-TRANS, applied to 3 and 2

5. (at-to A at-m 1 A z = 1) V (at-l 1 A at-*mn A z = 1) =- <io(att 2 A at_m)
by rule BR-CASE, applied to 2 and 4

6. atto 1 A at-m1 A lx -* (atto A atLrm A x = 1) V (attiA at-m 1 A x = 1)
an assertional validity

7. at_Io, A at_m Ax = 1 =•- <10(att 2 A at_m•)
by rule BR-MON, using 5 and 6

8. at-toAa mtnoAz= 0 0< 1 5(at4t2Aat-mj)
by rule BR-TRANS, applied to 1 and 7

9. 0 -E at-to N ata mo A x = 0
an assertional validity

10. 0 = 0- <_s(att 2 A at.m 1 )
by rule BR-MON, applied to 8 and 9

11. O<Kls(at-t2 A at_m 1 )
by rule INIT, applied to 10

Proof Diagrams for Bounded Response

Since the premises for the bounded response rules are very similar to those of the response
rules, it is straightforward to represent proofs of bounded response properties by response
proof diagrams. The only additional information included in bounded-response diagrams

is that helpful edges are labeled by a number representing the maximal delay of the
associated helpful transition.

The notions of a diagram being response-sound, and response-valid with respect to
assertions p and q are identical to those of the untimed case.
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In Fig. 9 we present a bounded-response diagram that is response-valid over program
ANY-YT with respect to p : 0 and q : ati- 2 A at-m 1 . This diagram is very similar to the
response diagram in Fig. 7 except for the maximal delays annotating the edges.

SatJ0o1 A at~mnoAx -

at-ml A z =1

at- t o

( at_!2 A at..m 1

Figure 9: A bounded response proof diagram.

Consider a path connecting an initial node to a terminal node along helpful edges. The
weight of the path is defined as the sum of upper bounds along the path. For example, the
weight of the path traversing the four nodes in the diagram of Fig. 9 is 15. In comparison,
the path that proceeds from the initial node directly to the node labeled by at - 0 has the
weight 10.

We define the weight of a diagram D to be the maximal weight of a path connecting
initial to terminal nodes in the diagram. Obviously, the weight of the diagram in Fig. 9
is 15. It is not difficult to see that the weight of the diagram is the longest delay possible
between the occurrence of a state satisfying an initial assertion (an assertion labeling
an initial node) and the occurrence of a state satisfying a terminal assertion. This is
summarized in the following claim.

Claim 4 If bounded-response diagram D with weight w is response-valid with respect to
assertions p and q, then the formula

p =,- 0<_q

is Pr-valid.

6 Since the proof diagram of Fig. 9 has been previously shown to be response-valid with
respect to 0 and at.t 2 A at-ml and its weight is 15, we conclude that the bounded
response property

E) =;-- o_<ls(at_12A atA mi)

is valid for program ANY-YT. By rule INIT, we may conclude that ANY-YT always termi-
nates within 15 time units.
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3.5 Verification of Age Formulas

For verifying properties specified by TLr, we develop an extended version of rule WAIT.
This will enable us to prove properties expressed by formulas of the form

p =ý- VWq q

for the more general case that p, SO, and q are timed assertions, i.e., state formulas that
may contain references to the clock variable T and occurrences of age expressions r(vp),
where lb is a state formula.

Before presenting the rule itself, we will present some axioms governing the behavior
of age expressions and the timed version of the initiality rule.

Preliminary Axioms and the Initisdity Rale

There are several axioms that govern the range of age expressions and are valid over all
computations of a timed transition system PT.

AGE-RANGE: 0 < F(ýb) <_ T for every formula V)
AGE-FALSE: "( -- F( --) 0 for every formula i)
UPPER-BOUND: P(En(r)) < u, for every transition r E T

We may use these axioms freely in any reasoning step. Note that a consequence of AGE-
RANGE is that T = 0 implies Fi(4) = 0 for every V).

For timed transition systems, we use a stronger version of the initiality rule INIT.

Define 1r to be

9T " O A T=0.

Then the timed initiation rule T-INIT specifies that any formula entailed by OT IS PT-valid.

T-INIT OT :

Verification Conditions

In preparation for rule WAIT, we introduced the verification condition {p} 7 {q} whose

validity ensures that every r-successor of a p-state satisfies q. When considering compu-

tations of a timed transition system, there are two ways to get from a situation to its

successor: by taking a transition or by letting time progress (a tick step). Consequently,

we introdu.,LC t-o verification conditions.

9 The condition {p} r {q}, is given by

p A p - q'

where p; stands for

p, A T' = T A ,. < '(En(r)) <_ u,

In addition to p,. p* also requires that time does not progress and that r has been
continuously enabled for at least 1, and at most u- time units.
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6 The condition {p} tick {q} is given by

Pu,ck A p - q,

where pt,,i stands for

V'=V A T'>T A A(r'(En(r))a•,u)
rET

The formula Ptck requires that the state variables do not change, time progresses by
a positive amount, and no transition becomes over-ripe as a result of the progress
of time.

In any of these for-.ulas we may need to evaluate the primed version of F(r), denutcd by
1'(r) for some assertion r. This is given by

F'(r) = if r' then I(r) + T'- T else 0.

For a set of transitions S C T, we say that {p} S {q}j is valid if {p} r {q} . is valid for
every r & S.

As in the untimed case, the validity of {p} T {q}7 and {p} tick {q} implies:

if (s, t) and (s', t') are two consecutive situations in a computation of P7 and
(3, t) satisfies p, then (s', t') satisfies q.

Let us check the verification condition

{atI 1 A at-mi A x= 1 A T < 5 + r(attj)_<O} 11
{at-to A at-mi A x 1 A T < 10 + F(at-to) < 15}1

for program ANY-YT with uniform time bounds L = 1 and U = 5 Expanding the
definition of the condition, we get

En(I,) u11

7r U -A{,}U o} A :'z= xA...T'= T A ... r(at ) 5

A
A at m1 A z = I ,, T --: 5--(at-ti) < 10

P

(at-1 0 )' A (at-rnl)' A x' A A T' < 10 P F'(at-to) 15

Clearly 7r' 7r - {Ifi} -1 {t} implies (at-fo)' and (at-m,)' = at.mi = Tr The conjunct
X .... I of p and the c njunct z' - x of p;, imply x' = 1 Since T' 7= T. we obtain
from T < 5 r(af -fl) and I'(at 11) - 5 the inequality T' 7 10 from which, by A';E-
RANGE, follows T' 10 l"(at to). Bv axiom UPPER-BOUND, P(at-..f1) ý 5, lk'irnig to

T' ' 10 ,. P"(at fn) "• 15
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Next, let us check the verification condition

{at-tl A at-m, A z = 1 A T < 5 + F(at-ti) _< 10} tick

{at-t, A at-m, A z=1 A T <5+r(at- 1 ,)<1O}.

Expanding its definition we get( r = A x'=x.. A TI . 'a-i
atlat-mr A z = I A T < 5 + F(at-i,) • 10

P

(at-tl)'A (at-m,)' Ax' 1 A T' < 5 + ['(at- 1 ) < 10

Since rr' = r and ,t-I, A at-mr holds, so does (atl1i)'A (atm 1 )'. The conjuncts z' = x
and x = I imply x' = 1. Expanding ['(at_t1 ) under (at-ti)', we obtain r'(a!_tl) =
[(at- 11) + T' - T. Consider the inequality T < 5 + F(at-i,). By adding T' - T to both
sides, we obtain

T' < 5+ F(at-11)+T'-T = 5+F'(att 1 ).

Using the conjunct F'(at-L.) < 5 from Puck, we conclude

T' < 5 + ['(at 1t) < 10,

establishing the last conjunct of q'.

A Rule for Timed Waiting-For

The following rule can be used to establish the PT-vaidity of the waiting-for formula
p =t- ýO W q for timed assertions p, V, and q, over a given timed transition system PT.

T-WAIT WL. p - q V

W2. {VJ T {qV ,O},
W3. {(P tick {q V Q

p =.- PWWq

Rule T-WAIT can be used in conjunction with the monotonicity rule W-MON (applied to
timed assertions). Together they form a complete system for proving timed waiting-for
formulas over timed assertions p, so, and q.

For example, we can use rule T-WAIT to prove the formula

at _ 1 A at-m1 ý, x 1A T < 5 + [(at-11 ) < 10 ~

(at .1, A at rn, A z -: I T < 5+ F(at 11) < 10) W
(at.,t 4A at-m, A x -- IAT'l<10 ( at. fe,) < 15)

q
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for program ANY-YT.

We take p and V to be at. 1
1 A ati-m A X = 1 A T < 5 + F(at.t. ) S 10 and q to be

at-to A at.m 1 A x = 1 A T < 10 + F(atet0 ) _ 15. Premise W1 is trivial since p - (0'

For premise W2 we have to prove

tat-ei A at-m 1 A = 1 A T < 5 + F(at_11) < 10}7

{ at-to A at-m1 A x = A T < 1O + r(at-to) < 15

at-1 1 A at-ml A x = 1 A T < 5 + F(at-11) K 10

for every -r E {r1 , mo,,, lo, }. For r = tj we have proven

{at-ti A at-m 1 A z = 1 A T < 5 + r(ate 1 j) < 101 11

{at-to A at-m1 A x 1 A T < 10 + F(at-to) < 15},

above. For all other transitions, it is straightforward to prove

{at-tj A at-ml A x = 1 A T < 5 + F(atU1 1 ) < 10} -r

{at-t1 A at-m1 A z = 1 A T < 5 + r(at-t1 ) 1 0}),

Premise W3 follows from QP} tick {f},

{at-t 1 A at-m1 A x = I A T < 5 + r(at-11) • 10} tick

{at-I, A at-ml A x = 1 A T < 5 + r(at-l1) < 10}

which has also been proven above.
We conclude that the formula

att 1 A at-m 1 A x = 1 A T < 5 + F7(attj1 ) < 10

(at- 11 A atm 1 A = 1 A T < 5 + P?(attl,) < 1i) w
(at-to A at-ml A z = I A T < 10 + r(at_10) :S 15)

is valid for program ANY-YT.

Using Proof Diagrams

To present more elaborate proofs, we may use proof diagrams whose nodes are labeled by
timed assertions.

We add to the definition of a sound (and valid) proof diagram the requirement

e For every n, e N it is required that the tick verification condition

1 } tick {pO}

is valid, implying that each of the assertions is preserved under the progress of time.
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Let us consider again the bounded response property which, in MTL, is specified as

P =•- 0 <d q-

In this form, as well as in the explicit clock style

p A T.=to =- O~qAT~to+d),

this property appears to be a response property. However, this property is actually a
safety property. We refer the reader to [Hen92] and [Pnu92] where it is pointed out
that many liveness properties become safety properties when we consider their bounded
version.

In fact, the TLr specification rj (r ((-'q) S (p A -q): d) identifies bounded response
as a safety property. Here, however, we prefer to work with another equivalent form

p AT=to =ý.- (T~to.+d)Wq.

This waiting-for formula states that, following every occurrence of p at time to, time
cannot progress beyond to + d without encountering an occurrence of q.

Let us show that this formula specifies bounded response within delay of at most d.
Since time is required to diverge, the waiting-for formula cannot be satisfied by T < to + d
holding forever. Thus, there must exist a position j such that T < to + d still holds at

situationi (,t),ie., t, K5 to + d, while q holds at the next situation(s+,+).Nt

that q is an assertion depending only on the state s,+I but not on time. According to the
definition of a computation, there are two cases: either t, = t,+i or t3 < t,+l but then

si= sj+. In the first case, tj+ !• ! + d so q occurs while the time is still within the
bound d. In the second case, q is also satisfied at situation (3,, t,) and, again, q occurs
within bound d.

Let us prove termination of program ANY-YT within 15 time units. Using rule T-IN IT,
It is sufficient to prove

OT =ý- (T < 15) W (at-12 A at-m 1 ).

The proof diagram presented in Fig. 10 provides a proof for this statement.
It is not difficult to show that the diagram is sound. For example, the verification

conditions for WI1 (including its preservation under a tick step) have been proven above. It
remains to show that the diagram is valid with respect to OT, T < 15, and at - 2 A at-ml.
The condition for 07. is

7r = Ito, mo}A z=O0... AT = 0~ at - tojA at-moA x= 0 A T = r(at -mo) <•5

Obviously, 7r { to,mo} implies at-to, A at-m0 , and T =0 implies, by axiom AGE-
RANGE, T = f'(at-mo) = 0 < 5. The condition for T < 15 is

which is obviously valid. The condition for at-1 2 A at-.m1 is trivial since 'Pp, 1z
atL1 2 A at-ml
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S oI a Ao1 A at m0 ^A x=0 A T = r( amoa t - 5

at-m 1 A x=1

Ito
£0( :at~t2 A at..m1•-

Figure 10: A timed waiting-for proof diagram.

Proving Untimed Properties of Timed Systems

The previous examples concentrated on proving timed properties, i.e., properties in which
time is explicitly mentioned, either via reference to T, or via age expressions, or via bound
subscripts on the temporal operators. Another interesting class of properties consists of
properties that do not refer to time directly but whose validity over a program PT is a
consequence of the timing constraints satisfied by the computations of PT.

For example, the property o(y :S 3) is valid over all computations of program ANY-YT

with uniform time bounds [1,51. It is certainly not valid for the (untimed) computations
of ANY-Y.

To prove this property, we first derive a timed version of rule INV for establishing the
PT-validity of the invariance formula oyp for a timed assertion V. This can be done by
applying rule T-WAIT with p - OT and q = F and observing that SO W F is congruent to
C]ýo. Using rule T-INIT, we obtain rule T-INV.

T-INV I1. OT-- So
12. {I'}T{1o}T
13. {S }tick { O

Rules T-INV and I-MON (applied to timed assertions) serve as the foundation for proving
invariance properties by proof diagrams.

We say that a proof diagram is invariance-valid with respect to timed assertion P if
it is sound, P ' , and the following two implications are valid:

Obviously, if there exists a diagram that is invariance- valid with respect to 4, then :§SO is
PT-valid.
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In Fig. 11 we present a proof diagram that is invariance-valid with respect to the
asseition V < 3.

attoo A x =0 a-ml A zA x

aL to A 2 y + I(atLto) < F(at.mo) _mo -atl 1 A y<2 _3

Cat-1 1 A 2.y + 1 +r(aL41)•r(at-mo) <5 -.- < :a~t1 :Ay :52

Figare 11: A timed invariance proof diagram.

Let us present some arguments for the validity of this diagram. First, let us check that
all assertions appearing in the diagram are preserved by a tick step. The only interesting
cases are assertions containing age expressions. The relevant expressions are

2 . y + P(at-to) < r(at-mo) <_ 5 while at-to A at-mo holds,

2 -y + 1 + r(at- 1 ) < F(at-mo) < 5 while at-11 A atmto holds.

In both cases, when time progresses from T to T' > T, both sides of the inequality increase
by T' - T. Furthermore, r'(at-mo) < 5 follows from the definition of Pc&k.

Next, we should check the verification conditions corresponding to the transitions
labeling edges in the diagram. The verification condition corresponding to to is

p A A at-to A 2.y + r(at-to) < r(at-mo) < 5
--+ (at-12 )' A 2 y' + 1 + r'(ati) < r'(atmo) < 5

Clearly, plo, which is part of pL, implies (at 1-)' and y' = y. The rest of p;0 implies
r(ai-to) > 1 and T' = T, which together with at-mo leads to r'(at-mo) = F(atmo).
By axiom AGE-FALSE and the definition of P', r'(at- 11) = 0. We thus have

2. y' + 1 + r'(at-ti) = 2. y + 1 < 2. + r(atto) < [(at-no) = Ti(at-mo) < 5.

On taking transition mo from any of the assertions appearing on the left of the diagram,
we have that either 2 .y < 5 or 2 - y + 1 < 5. In both cases, this implies y < 2.5 < 3.

It is also straightforward to show the condition

ET - at a-to A at-moo A =O A 2.y+F(at-to)<r(at-mo)<5,

since OT implies at-Lo A amt 0o A z 0 and y = r(a-to) = F(at-mo) = 0.
This shows that the diagram is invariance-sound with respect to y < 3 and establishes

that the formula

r](y < 3)

is valid over program ANY-YT.
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A Time Dependent Mutual Exclusion Algorithm

As a final example, we present a fragment of a mutual exclusion algorithm, due to M.
Fischer, which functions properly only due to the timing constraints associated with the
statements in the language. Similar proofs to the one we will present here are given in
[SBM92], [AL92], and [MMP92].

The algorithm is presented in Fig. 12. Each of the processes can progress to its second
location (41 or ml, respectively) only when z = 0. Then, process P, sets x to i = 1,2. It
delays for one instruction time at the next statement which is skip. The next statement
checks whether x still equals i and, if i; does, 'he pr,.cess proceeds to its critical section.
Of course, in some executions, P, may set x to 1 at statement 41 but find its value to be
2 at 13, because P2 has set z to 2 between the execution of these two statements.

z: integer where z = 0

to" await X =0 m 0  await z=0
1: X :=1 n 1 : z:= 2

P1:" t2: skip P2 M2 : skip
t3: await X =1 iM3 : await x=2
t4 critical m 4 ' critical

Figure 12: Program MUTEX: Coordination by timing.

The main verification problem associated with this program is the following:

Claim 5 Assuming all transitions in program MUTEXT are assigned uniform time bounds

L, U, where 2 - L > U, then the property of mutual exclusion, specifiable as

]-,(at-4 A at-M 4 ),

is valid for MUTEXT.

In Fig. 13, we present a proof diagram for this property. This diagram employs an

additional convention by placing a tabular grid over some of the nodes. The interpretation

of the grid is that all nodes belonging to a row of the table have the assertion appearing

on the left of that row as a common additional conjunct. In a similar way, all nodes

appearing in a column of the table share as a common conjunct the assertion appearing

at the top (or bottom) of that column. For example, the full assertion associated with
the node appearing at the top left corner of the diagram is:

x = 1 A at_4 A F(z # 0) > 2 • L A amt0o

row's common conjunct column's

It is possible to check that the diagram is invariance-valid with respect to the assertion

-'(at-1 4 A at-m 4 ). All assertions are preserved by the progress of time. For the initial

assertion, this is true since x / 0 is false as long as the control stays at 1o,1 n 0 .1  All

other assertions refer to time only by equalities or inequalities that either contain age

expressions that grow at the same rate on both sides of the equality/inequality, or are
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at-m l A {

at-moo r(at_..mi) _ r(x j 0) atm 21 ,

atJ 4 A

>r13 113

r(x :-o)Žý!L + (at-4) X=

at-12 A n

['(x # )= r(at_4) ,

at~lo,1 A att 0o, 1 A z F(x o) o

_____ _ [in

at-m2 A
r(, 4 0) = r(at_)•

at-m 3 A

F(x 7#0)Ž!L + (at-m3 ) D=

at-M 4 A 3>7
r(x 0o) 2.L L

at_1 1 A
o r(at-ii) > r(z $0)

Figure 13: A proof diagram for program MUTEXT.

of the form r(x $ 0) ? 2- L, in which the left-hand side grows with time, while the
right-hand side is constant.

The diagram identifies four transitions as impossible. They are transition t3 from the
two nodes satisfying atL43A(atmi V (atm 2..4 Ax = 2)) and transition m 3 from the nodes
satisfying at-m 3 A (at- 1 1 V (at_2..4 A z = 1)). There are many other transitions that
are impossible, for example me from a node satisfying at- 3 A atmo, which is impossible

due to x = 1. The reason we singled out these four is that they form the most direct
threat to mutual exclusion, That is, If they were possible then mutual exclusion could
have been violated.

Transitions t3 from an (at_m 2 ., A z = 2)-state and m 3 from an (at4t2. A x 1)-state

are impossible because they are disabled on these states. Taking 6 from an atml-state
or mn3 from an a1 11-state is impossible due to timing considerations.
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Consider, for example, taking transition 13 from a state (at column 2 and row 2 from
the top) satisfying

z = 1 A at-mi A r(at-mi) > r(x 7 0) A at-! 3 A r 0) > L + r(a-tJ3 ).

Combining the two inequalities, such states also satisfy

r(at-m1 ) > L + r(atJs)

Transition 43 can be taken only when r(at-13) > L which would lead to

r(at-m1 ) > 2.L > U,

which violates axiom AGE-RANGE for transition mi.
The considerations leading to the impossibility of taking m 3 from an at- 11-state are

similar. We conclude that the diagram is valid with respect to -(at_1 4 A at-m,) and
therefore

ci-(at_1 4 A atm-4 )

is valid for program MUTEXT.

4 Hybrid Systems

The last model presented here is that of hybrid systems. Hybrid systems are systems that
combine discrete and continuous components. To represent the continuous components,
the hybrid system model contains activities that modify their variables continuously over
intervals of positive duration, in addition to the familiar transitions that change the values
of variables in zero time, representing the discrete components. The model presented here
was first introduced in [MMP92].

It is obvious that many systems that interact with a physical environment, such as a
digital module controlling a process or a manufacturing plant, a digital-analog guidance
of transport systems, or a control of a robot, can benefit from the more detailed modeling
proposed by the comprehensive framework of the hybrid model.

4.1 Computational Model: Phase Transition System

A phase transition system (PTS) 4' = (V, 9, T, A,l,u,T) consists of:

0 V = {uI, ... ,u,}j : A finite set of state variables. The set V/= V U V, is partitioned
into Vd the set of discrete variables and V, the set of continuous variables. Contin-
uous variables always have the type real (or type complex). The discrete variables
can be of any type. A state is any type consistent interpretation of V. The set of
all states is denoted by E.

* 0 The initial condition. A satisfiable assertion characterizing the initial states.

* T A finite set of transitions. Each transition r E T is a function
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defined by a transition relation p,(V, V'). A transition can also change the value of
a continuous variable.

As mentioned earlier, the enabledness of a transition r can be expressed by the
formula

En(r) : (3V)p,.(V, V'),

which is true in s iff s has some r-successor. The enabling condition of a transition
r can always be written as 6 A r., where 6 is the largest subformula that does not
depend on continuous variables. We call ir the continuous part of the enabling
condition and denotc it by En,(r).

" A : A finite set of activities. Each activity a E A is a conditional differential
equation of the form:

p --+ i =e,

where p is a predicate over Vd called the activation condition of cc. z E V, is a
continuous state variable, and e is an expression over V. We say that the activity
a governs variable z. Activity a is said to be active in state s if its activation
condition p holds on a. Otherwise, a is said to be passive.

It is required that the activation conditions of the activities that govern the same
variable x be exhaustive and exclusiv,-, i.e., exactly one of them holds on any state.

"* A minimal delay 1, E R+ for every transition T E T.

"* A maximal delay u,- C R- for every transition r E T. We require that u,. > 1,. for
all r E T.

" A set of important events 1. This is a finite set of assertions that includes at least
the assertions Enr(Tr), for each r E T. These are assertions such that changes
in their truth values must be observable. Usually, I includes, in addition to the
assertions {En,(r)), all the assertions that appear in specifications of the system.

For simplicity, we require that transitions whose enabling condition depends on a contin-
uous variable be immediate. We also require that every transition is self-disabling.

As in the real-time case, we only consider progressive systems, i.e., systems that do
not admit Zeno sequences.

Activity Successors

Consider a phase transition system 1•, and Let (sa,ti) and (s2 ,t 2ý be two situations
of 'P with ti < t 2 . An evolution from (s1 ,tl) to (S2, t 2 ) consists of a set of functions
F {f,(t) I x e V,} that are differentiable in the interval It,, t2] and satisfy the following
requirements:

• f,(tl) = s1[x] and fh(t2) = s2ixk. Thus, the values of .f,(t) at the boundaries of the
interval [It1, t21 agree with the interpretation of x by s, and s2, respectively.
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" sI[y] = s2[y] for every y E Vd. That is, states s, and s2 agree on the values of all
discrete variables.

"* For every activity p --+ f = e that governs z, if p holds at a1 , then f" satisfies the
differential equation

f.(t) = e(F)

in the interval [tl,t 2], where the expression e(F) is obtained from e by replacing
each occurrence of a variable y E V, by the function fy(t).

"* For every assertion W E 2, ;(.) has a uniform truth value for all t E (t 1 , t2 ), which
equals either (P(t1) or ,•(t2).

The last requirement ensures that the truth value of every important assertion 9P E T is
uniform throughout the interior of the evolution interval, and matches its value at one of
the endpoits of the interval. In particular, it disallows a change in the truth value of w
in an internal point. It also guarantees that any value assumed by 'O at internal points
is also represented at one of the endpoints. This implies that 'W cannot be true at both
endpoints but false in the middle, nor false at both endpoints but true in the middle.

If such an evolution exists, we say that the situation (a2 , t2) is an actiity successor
of the situation (s 1 ,ti). Assuming that the differential equations satisfy some reasonable
healthiness conditions, such as the Lipschitz condition, there exists at most one evolution
from (s1 , t1 ) to (s2 , t2 ). In fact, the functions F are uniquely determined by the situation

(s1, tj ).
We denote by .A('s,,ti)) the set of all activity successors of (sat 1).
Consider, for example, a trivial phase transition system with a single (continuous)

state variable z, no transitions, a single activity a given by a : Z = -1, and an empty
". Then, the following are exmples of a situation and its activity successor:

si: (x 0, T:I .)C A(so (x 1, T:O))

S2:(X -1,T 2) E A(si ýx :O, T 1))

s2 (z -l,T:2) E A(so:(ax:1,T:O))

Sampling Computations

A samphng computation of a phase transition system 4, (V, E, T, A, 1, u, 2) is an infinite
sequence of situations

a : (s0,to), (s..ti), / 2 Wt)

satisfying:

"* Initiation: so 0  0 and to = 0.

"* Consecution: For each j = 0, 1,

Either t = tj~j and s£-i E r(sj) for some transition r E T - transition r is
taken at j, or
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- (si+i, tjt+) is an activity successor of (sj,ti) (implying t1 < t,+1 ) - a contin-
uous phase takes place at step j.

"* Lower bound: For every transition r E T and position j Ž_ 0, if r is taken at
j, there exists a position i, i < j, such that t,+ 1,. < t. and r is enabled on
Si, Si+1j .- . , ) j.

This implies that r must be continuously enabled for at least 1. time units before it
can be taken.

" Upper bound: For every transition r E T and position i > 0, if r is enabled at
position i, there exists a position j, i < j, such that t, + u, > ti and r is disabled
on sj.

In other words, -r cannot be continuously enabled for more than u, time units
without being taken.

" Time Divergence: As i increases, t. grows beyond any bound.

Example

Consider a simple phase transition system 11 given by:

State Variables V = Vc : {z}
Initial Condition 09 X = 1
Transitions T -{r}, where p,: (z < -1) A (z'= 1)
Activities A • {a}, where a " z = -1
Bounds 1" = -U,. = 0.
Important events I " {En,(r) . x < -1}

Fig. 14 depicts the full behavior of system 1b as a function from T E R+ to the value of
x. Note that this is not really a function because at T = 2 (and all other even positive
integers) x has two values: -1 and +1. The value -1 is attained at the end of the
continuous phase, while +1 is the result of taking transition r at this point.

There are (uncountably) many sampling computations that correspond to this full
behavior.

For example, the sampling computation

j" : 0 (z'l , T 0) (-x 1 ' : - , T .:2) -
82 (x ,T 2) 8- 3 s (z -1, T 4 -

corresponds to sampling the full behavior as shown in Fig. 15.
A more frequent sampling leads to the computation

0 2 : (x " I , T 0) s z 0 7' 1)
(S2 -X T 2) S3 1, T 2) -

S4 (X 0, T 3) 2_, ss (x -1, 7' 4) _
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T
1 2 3\ 4

-1

Figure 14: Full behavior of hybrid system 4a.

1so:(z 1, T:0) s 2 (x 1, T: 2

T
0 2 34

s,:(x:-1 ,T:2) s3 (z:-1, T:4)

Figure 15: Sampling computation cra.
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1so (x:1, T:0) s 3 :(x: 1,T: 2)

"s• :x 0, T 1) s4 : (z 0o, T 3) T

S- (z:( :-1,,T:2) s 5 (z:-1,T:4)

Figure 16: Sampling computation o,2.

whose sampling points are shown in Fig. 16.
In comparison, consider phase transition system 4)2 which is identical to 4), in all

components, except for 1, which is given by

Important events -2  : {X < -1, X = 0}

Thus, system 42 considers the assertion x = 0 to be an important event in addition to
x < -1, which is the enabling condition of transition 7. The situation sequence C12 is a
sampling computation of '12 as well. However, the sequence orl is not. Informally, this is
because olr fails to observe the (infinitely many) points at which z becomes 0. Formally.
sl " (x : -1, T : 2) is no longer an activity successor of so : (z : 1, T 0) because the
evolution from so to s, did not respect the condition that important assertions do not
change their truth value in the middle of a continuous step.

Super-Dense Computations

In addition to sampling computations, IMMP921 presents another class of computations,
based on the notion of hybrid traces. Sampling computations, similar to computations of
timed transition systems, have the signature N ý-- E x R-, that is, each natural number
j 0, 1,... is mapped to a pair consisting of a state sj and a real time stamp tj, i-e., a
situation,

In contrast, the other type of computations presented in [MMP92], to which we refer
here as super-dense computations, have the signature R+ x N '- F, that is, each pair (t, i),
where t E R+ and ' e N, is mapped to a state s E E. The pair (t,i) identifies a time
stamp t and a step number i. The step numbers correspond to the transitions that are
taken at time instant t.

For example, the (single) super-dense computation produced by phase transition sys-
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tem 4j is given by a function z(t, i) from R* x N to R defined as

1 for t=0 and i>0
1-t for 0<t<2 and i>0

-1 for t = 2 and i=0
1 for t= 2 and i> 1

3-t for 2< t<4 and i>0
-1 for t=4 and i=0

1 for t =4 and I> 1

An argument, offered in [MMP92], claims that the super-dense semantics provides a more
precise representation of the behavior of hybrid systems than the semantics of samphng
computations. The main criticism of sampling computations complains that some im-
portant events may fail to be observed, such as the event of z becoming 0, to which
computation e71 is oblvious.

This problem of undersampling is solved here by the introduction of the impor-
tant event component. Consequently, in this paper we continue to use the samphng-
computation semantics. The advayitages of the samphng semantics are that it is simpler
than the super-dense semantics and conforms better with sequence based verification
methods.

4.2 System Description by Hybrid Statecharts

Hybrid systems can be conveniently described by an extension of timed statecharts called
hybrid statecharts. The main extension is that states may be labeled by (unconditional)
differential equations. The imphcation is that the acti, '.ty associated with the differential
equation is active precisely when the state it labels is active.

We i1.ustrate this form of description by the example of Cat and Mouse taken from
[MMP92]. At time T = 0, a mouse starts running from a certain position on the floor
in a straight line towards a hole in the wall, which is at a distance X0 from the initial
position. The mouse runs at a constant velocity v,. After a delay of ,5 time units, a
cat is released at the same initial position and chases the mouse at velocity v, along the
same path. Will the cat catch the mouse, or will the mouse find sanctuary while the cat
crashes against the wall?

The statechart in Fig. 17 describes the possible scenarios.
The specification (and underlying phase transition system) uses the continuous state

variables Xm and xz, measuring the distance of the mouse and the cat, respectively, from
the wall. It refers to the constants Xo, v,,, v,, and A.

A behavior of the system starts with states Cat.rest and Mouse.rest active, and vari-
ables x, and zx set to the initial value Xo. The mouse proceeds immediately to the
state of running, in which its variable x, changes continuously according to the equation

, 1...,, The cat waits for a delay of A before entering its running state. Then there
are several possible scenarios. If the event z,, .: 0 happens first, the mouse reaches sanec
tuary and moves to state safe, where it waits fnr the cat to reach the wall As soon as
this ha.ppens, detectable by the condition X. x., - 0 becomnng true, the system rn:,ves
to state Moussc-Wins. The other possibility is that the event r, -:- " occurs first,
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Initially z, =z, X

(Mouse Cat>
r'est 1es

run rn

X, 0•T7 ---- Vm zce = --vc

s afe

=Co 0 Xc= Z, > 0

Moue- ýWinsCt-Wn

Figure 17: Specification of Cat and Mouse.

which means that the cat overtook the mouse before the mouse reached sanctuary. In this
case they both stop running and the system moves to state Cat- Wins. The compound
conditions z. = X, = 0 and x = x,, > 0 stand for the conjunctions ZX = Xc,, A,, =, 0
and z= x ,. A ,m > 0, respectively.

This diagram illustrates the typical interleaving between continuous activities and
discrete state changes, which in this example only involves changes of control.

The idea of using statecharts with continuous activities associated with certain states
(usually basic ones) was already suggested in [Har841. According to this suggestion,
these states are associated with activities that represent physical (and therefore possibly
continuous) operations and interactions with the environment.

The Underlying Phase Transition System

Following the graphical representation, we identify the phase transition system underlying
the picture of Fig. 17.
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"* State Variables: Given by V, = {ze, z,.} and Vd = {7r}. Variable r is a control
variable whose value is a set of basic states of the statechart.

"a Initial Condition: Given by

)0 : 7r = {Mouse.rest, Cat.rest} A XC= z,=,, = Xo.

"* Transitions: Listed together with the transition relations associated with them.

M.rest-run Mouse.rest E ir A 7r' = 7r - {Mouse.rest} IU {Mouse.run}
C.rest-run : Cat.rest E 7r A 7r' = r-- { Cat.rest} U { Cat.run}

M.run-safe Mouse.run E 7r A z,,, = 0 A
re'= ir - {Mouse.run} U { Mouse.safe }

M.win (Active f r) $ ^A x = ,= 0 A ir' ={Mouse-Wins}
C.win (Active n r) $4' A z, = z,,, > 0 A 7r' = {Cat-WWins}

The set Active stands for the set of basic states

{ Mouse.rest, Mouse.run, Mouse.safe, Cat. rest, Cat. run}.

"* Activities: Four activities represent the running activities of the two participants.
Their equations are given by:

Ot . Mouse.run E 7r X, -v,

Oftr
aCMCt Mouse.run r -* x,,, 0
,,on* Cat. run E 7 --- , := -v,

Ca Off Cat.runVr - c 0

" Time Bounds: For transition C.rest-run, they are [A, A]. All other transitions are
immediate.

" Important Events: Given by

1 i : IX,=0, z = .= 0, z = X,,. > 0}

System Description by Textual Programs

It is possible to extend the simple programming language SPL to represent timed and
hybrid systems as well. The resulting language is a subset of the language Statezt intro-
duced in JKP92b], which is shown there to have expressive power equal to that of hybrid
statecharts.

We extend SPL by the following statements:
* skip

This statement serves as a filler. It does nothing and terminates in a single execution
step.
S i'le

Like the skip statement, this statement does not change the data state. However.
unlike the skip statement, the idle statement never terminates. The only way to get
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out of an idle statement is by preemption, which is another important construct of the
extended language introduced later.
* delayfl, uJ

This statement delays for a time lying between I and u. Its semantics is given by a
transition with time bounds [1, ut].
* Selection

For statements S and S2 ,

S1 U S2
is a selection statement. Its intended meaning is that, as a first step, one of S" and
52, which is currently enabled, is selected and the first step in the selected statement is
executed. Subsequent steps proceed to execute the rest of the selected substatement. If
both S• and S 2 are enabled, the selection is non-deterministic. If both S, and S 2 are
currently disabled, then so is the selection statement.
0 Cooperation

For S, and S2 statements,
S, Il S2

is a cooperation statement. It calls for parallel execution of S and S 2 . The cooperation
statement terminates when both S, and $2 have terminated.
* Preemption

For statements S, and S2 ,
S1 U S2,

is a preemption statement. Steps in the execution of this statement a-e either steps in the
execution of $ 1 taken forever or till Si terminates, or zero or more steps in the execution of
S1 followed by steps in the execution of S2. Thus, the intended meaning of the preemption
statement is

Execute S forever or until it terminates,
or execute S" until a first step of S 2 is taken, and then continue to execute S2.

As usual, if a transition -r in S2 has been continuously enabled for u., time units, then r
must be taken and execution switches to S2 before time can progress.
Consider, for example, the statement

while T do

[r =delay (3,3] U await y >2

Assuming the await statement to be immediate (assigned maximal delay 0), this statement
terminates as soon as y grows above 2, even though the while statement, when standing
alone, does not terminate.
SDifferential Equations

Differential equations are also acceptable as statements of the extended language. A
differential equation statement never terminates, and the only way to get out of it is by
preemption, using the U construct. Statements consisting of differential equations are
associated with activities, in contrast to all other statements which are associated with
transitions. Thus, the statement
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gives rise to the activity

at: I E 7r -- z = e.

We refer to this activity as an ezplicit activity since it corresponds to an explicit statement
in the program.

Besides the explicit activities, each continuous variable x E Vc also has an implicit de-
fault activity a,'ff which controls its continuous change when none of the explicit activities
governing z is active. If ft,..., ,, are all the statements giving rise to explicit activities
for x, then its default activity is given by

XaOf ,..l, n 7r --, = 0.

In addition to these new statements, we assign time bounds to each transition in the
language.

We refer the reader to [KP92b] for a sampling-computation semantics of this extension
of SPL.

As an example, consider the statement(fto: while T do]
1 : delay 3, 3]j U mo: await y>2 ; k

12 y:= Y -Y

The transition relation associated with m0 is

p,, : moE 7r A y > 2 A 7r' =•r - {mo, to,t,,2} u {k}.
Thus, on executing ino, control discards any locations within statement to.

Cat and Mouse in Extended SPL

The top level of the hybrid SPL specification is

x,, x. .- real where zx- z,, = x o

Spec r await z, z,, > 0 Cat-Wins"
[Mouse 11 Cat] U U

await zx = x, = 0; Mouse- Wins

Mouse and Cat are processes defined as follows:

Mo use [" VJ

await x, 0; idle

Cat [ delay.., A]; [T = -vj

The idle statement at the end of process Mouse corresponds to state Mouse.safe in the
statechart.

The transitions associated with the statements of this extended SPL program arc all
immediate, except for the transition associated with the delay statement, which is assigned
the time bounds [A. Al.



The Sharpness Condition

Requiring that systems be progressive still does not guarantee that every phase transition
system has a computation. Consider, for example, a system described by the statechart
of Fig. 18.

Initially z = 0

S= 1 S 0,01

Figure 18: A system with no computations.

Any possible computation must start at the initial situation so (7r no, x • 0, T 0).
Unfortunately, there is no way to proceed from this situation. The transition from n0 to
n7 cannot be taken since z is not positive. Time cannot progress by even a small amount
f > 0, because that would cause the transition from n0 to ni to be continuously enabled
for E time units which is higher than its upper bound 0. It follows that this system has
no computations.

Obviously, the problem can be traced to the nature of the condition x > 0 which, when
x increases continuously, has no definite point in time at which the condition becomes
true. To prevent such situations, we define a subset of formulas to which we refer as sharp
formulas and which always have definite points at which they become true. A formula p
is defined to be sharp if:

"* p depends only on discrete variables, or

"* p has the form ti _< t2 for some terms t, and t 2 , o0

"• p has the form q A r or q V r for some sharp formulas q and r.

A phase transition system is called sharp if each immediate transition r is a member
of a set of immediate transitions {ri,.. ., 1} (possibly consisting of r1 alone) such that
the disjunction

En(,l) V-... V En(-k)

is equivalent to a sharp formula. This ensures that when r becomes enabled as a result
of a continuous evolution, then the disjunction En(r1 ) V-- V En(rk) which is sharp also
becomes true. It follows that there is a first moment at which the disjunction becomes
true and one of the transitions in the set {r,,. . ., rk} can be immediately taken.

Obviously, the system of Fig. 18 is not sharp and this explains the problems associated
with it. On the other hand, consider the Cat and Mouse system of Fig. 17. The enabling
condition of transition C.win is (Actwe n 7r) • 0 A zc = A, A x, > 0, which is not
a sharp formula. However, when we consider the larger set of immediate transitions
{C. wzn, M.win}, the disjunction of the enabling conditions of its members we obtain

(Active Ci, r) # /A, • = xr A x"' "'0,
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which is a sharp formula. Consequently, the Cat and Mouse system is sharp.
From now on, we will only consider sharp phase transition systems.

4.3 Requirement Specification Languages

At present, no special extensions to the requirement specification languages have been
identified for hybrid systems. As in the case of the real-time model, we use either MTL or
TLr for specifying properties of hybrid systems.

For example, to specify that the mouse will always escape the cat, for the system of
Fig. 17, we can write the invariance formula

o(Cat. runA(c = z)= 0),

where we use names of states in a statechart as control predicates. Of course, such a
property will not be valid over all computations of the cat and mouse system, unless
some relation is established among the problem parameters X0, A, v,, and v,. Indeed, a
sufficient condition for this property to be valid is:

0+ X0.

Vm Vc

4.4 Verification of Age Formulas

Here we only consider verification of TLr formulas over hybrid systems. The age axioms
and rule T-INIT, presented for the real-time model, hold here as well. The major difference
is in the verification conditions.

Verification Conditions for Hybrid Systems

The verification condition {p} r {q}7 remains unchanged. However, instead of using the
verification condition {p} tick {q}, we define a new condition

{p} cont {q}

which is intended to ensure that every continuous phase leads from a p-situation to a
q-situation.

To formulate the verification condition over continuous steps, we consider an evolution
from a situation that can be described as (V, T) to the situation (V', T'), assuming that
T'>T.

An activity selection is a mapping g : V, '-* A, assigning to each continuous variable
x E V, an activity g(z) in its governing set. Assume that the activity selected by g for
each continuous state variable x E V, is

Let Pg = {ff(t)} be a set of functions, one for each continuous variable x E LQ, such that

* f•(T) z, for every x E V.
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e The equation

x;(t) = eg(Fr)

is satisfied in the range t E [7T, T'1, where e9(Fg) is obtained from eg by replacing
each occurrence of y E V1 by fP(t).

We assume that we know how to express the functions ff in a closed form, referring to
z, T, and t. For example, if g selects for z E Vc the activity z = 2, then fg(t) is given by

f•(t) = x+2.(t-T).

The Condition

With each possible activity selection function 9, we associate a verification condition
{p} g ýq}, which is given by

Pfont A p - q,

where the relation Pýoo stands for

A z'=x A A f(T'(=x' A A gA A T'>T A A (r'(En(r)) u) A
SzVEV zEV rET

(Vt:(T<t<T'): (Pg(t)) A r'(ýo)= r(o)+T'-T
V

A (vt:(T < t < T') ((t)) A -W' A r[() = 0
WET V

(Vt (T < t< T') --•(P(t)) A (-'OPV-i'') A r'('o)= 0

The first conjunct of the formula states that all discrete variables are not changed in a
continuous step. The next conjunct states that the value of f•(T') agrees with z'. The
third conjunct requires that the activation condition p: holds at the pre-state V. The
fourth conjunct requires that time progresses by a positive amount. The last conjunct
in the first line ensures that the progress of time cannot cause any transition to remain
continuously enabled longer than is allowed by its upper bound u,.

The next line requires that every important assertion is either true throughout the full
evolution interval, or is false throughout the full evolution interval, except possibly at one
of its boundaries. The formula So9(t) is obtained from (P by replacing each occurrence of
y G V, by fy(t).

This line also defines the value of F'(r) after a continuous phase takes place. In order
to ensure that this definition actually measures the age of an assertion, we restrict the
use of the expression r(r) to assertions r that appear in the important event set ".

In comparison, When a transition is taken, the value of F'(r) is determined by the
following axiom:

F'(r) = if r' then F(r) else 0.

Consider, for example, the condition {-- < X K 1}g{-1 < x K 1} for system
•,P. Since there is only one activity, there is only one activity selection g, i.e.. the one
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that selects this activity. The evolution function f9 is given by fx(t) = x - (t - T).
Consequently, the verification condition is given (after some simplifications) by:

7rI = r A z' =x - (T' - T) A T'> T

A r'(x < -1) < 0
(Vt . (T < t <_ T') 'x - (t - T) <ý -1)

A r,'(x < -1) = r(x < -1) + T' - T
&L V V A -1<z< 1 --- -l<z'< 1

(Vt: (T < t < T')' -(t - T) < -1) p.q
A x'> -IAP'(z < -1) =0

V
(Vt : (T < t < T') x - (t - T) > -1)

A (x > -1 V x' > -1) A rF(• < -1) = 0

PC om.t

First, we show that each of the three possibilities allowed by the last conjunct of the
formula implies x' > -1.

* The case (Vt (T < t < T') : x-(t-T) < -1) is impossible since, as F(x < -1) _> 0
and T' > T, this leads to r'(x < -1) > 0 which violates the conjunct in the second
line of the formula.

* The case (Vt: (T < t < T') x - (t - T) •_ -1) explicitly requires x' > -1.

* The case (Vt (T < t < T') x-(t-T) > -1) implies that x-(t-T) > -1 holds for
all t c (T, T'). It follows that, in thelimit oft approaching T', x' = x-(T'-T) > -1.

For the other inequality, from T' > T it follows that x' = x - (T'- T) < x < 1 and
therefore z' 1.

Finally, we define the verification condition over a continuous step to be

{p}cont {q}: A(p}g{q},

where the conjunction of the individual conditions {p} g {q} is taken over all possible
activity selection functions g.

Rules for Waiting-For and Invariance Formulas

Having defined the two verification conditions, we can immediately formulate two rules
for proving waiting-for and invariance formulas over hybrid systems.

H-WAIT Wl. p - q V fP H-INV 11. OT--

W2, {P} T {qV (}, 12. {CPo}T{ } I,
W3. {Jý} cont {qVo},I 13. {,c} cont {f=}

-- p W- Wq {__
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We will illustrate the use of these rules on several examples.
For the most trivial example, consider system <'1. We will prove that the invariant

o(-1 _< z < 1) is valid over all sampling computations of this system. We use rule H-INV
with ý0: -1 <z < 1.

Premise I1 assumes the form

x=1 A T=0 *-1 <z<i,

which is obviously valid.
Premise 12 assumes the form

-A (x' 1) A ... A < - , <-

which is also obviously valid.
Premise 13 requires showing that -1 < x < 1 is preserved under a continuous step.

However, this has been verified above.

Proof of a Hybrid Version of Program ANY-Y

In Fig. 19, we present an extended SPL program ANY-YH that can be viewed as a hybrid
version of program ANY-Y.

y: integer where y = 0
z: real where x = 0

-PI-
t2:

-P, P2 -

Figure 19: Program ANY-YH: A hybrid textual program.

In this program, process P2 represents a continuous component that lets x grow linearly
from 0 until it reaches a value z > 1. At that point, statement mr intervenes and shuts

off the continuous process. Process P1 is very similar to process P1 in program ANY-Y. It
loops, incrementing y, as long as x < 1. Once process P2 detects that z > 1, it terminates.
Note that x never exceeds 1, so that all references to x > I can be replaced by z -- 1.

The time bounds associated with this program identify transition m, as immediate
(i.e., time bounds [0,01), and assign uniform time bounds [1,5] to all other transitions.

To fully comprehend the behavior of this program, we present two possible com-
putations of ANY-YH. The first computation attempts to maximize the value of y on
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termination.

(ir I{to,mo, mi} x :0.0, y :0, T :0) c (i" {Io,mo,m1 }, O x .0.2, y 0,T ) T --,

(T171,,mo,ml} x'O.2, yOT () c""15) ((aj{.,mo,mA}, x0.4,y0,tTm2)-
(7r :{ !o , M o, M I } , x 0 .4 , y : !, T -2 ) _c o,,____, (r {to , m o , m } , x :0 .6 , y 1 , T -3 ) 14)2

O r a { (, m o , : m } x •0 .6 , y - , T : -3 ) A {A, m o , m ,} ,x '0 .8 , y 1 , T '4 ) 1-1 --,
\1r'{to, rno, M1}) x:'O.8, y:2, T : 4) ýr f•-{o,mo,mlI}, x" 1.0, y•2, T :'5) '-&

(7r"Ito, m2} x 1.0,y:•2, T :5) (i fT-12, m2} xz 1.0, y:2, T :5) f°-Z

(71" {t2,M2} x 1.0,y :2, T : 6)m

The second computation attempts to minimize the value of y on termination.

(7r-{ to, mo, miIx}, 0.0,yO0, T'O>0 ___ ý7r {to,mo, m}, x 1.0, y0, T5) ••

< ,7 .{lo,M 2} ,x : 1.0 , y : 0 , T 5) 4 < ,0 (7 {12,M 21 X 1 1 .0 , Y 0 , T 5) c °u--t
(7r f 12, M 2} I x .0, y '0,T :6) __°+' ..

We will now prove that program ANY-YH/ also terminates within 15 time units. Using
rule T-INIT, it IS sufficient to prove

OT :.- (T < 15) W (at~l - ,2A t -M2).

The proof uses rule H-WAIT and monotonicity. The main constituents of the proof are
presented in Fig. 20. It is not difficult to check that this diagram is vasd with respect to

iAat-m A A << 721.2

MII

at i 0 r- E2 0.

to

Figure 20: A hybrid waiting-for proof diagram.

(_)T, T <- 15. and at_12 A at-m2. The only new element is checking that assertion Y^o Is
preserved under a continuous step. The activity set for this program consists of the two
activities]

at at-too -+x= 0.2
Q 2 " -at _too -+ 0 .
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The only activity selection function g relevant for states satisfying ý'o is the one that
picks al for z, i.e., g(x) = a,. For this choice of g, the evolution of z is given by
fg(t) = z + 0.2 - (t - T). Consequently, the appropriate verification condition (after some
simplfications) is

ir'=7r A z'= x +0.2 (T- T) A T'> T A ... '

A (Vt:T<t<T':x+0.2.(t-T)< 1) 1 Pront

A ateo1 A a-mo0 A at-m 1 A 0<z=0.2-T_<l A T<5

V (at-toj)' A (at.mo)' A (at-m 1 )' A 0 < '=0.2- T' < 1 A T' < 5
q'

It is not difficult to see that this implication is valid:

"* (at-to,1 )'A (at-to)' A (aoml)' follows from r' ir.

" x' = 0.2. T'follows from x' = z + 0.2 (T'- T) and z = 0.2 . T.

"* 0 < x' follows from 0 < T < T' and z'= 0.2 - T'.

"* Taking the limit over (Vt: T < t < T' : z+0.2. (t - T) < 1) as t tends to T', yields
'= + 0.2-(T'- T) < 1.

"* T' < 5 follows from 0.2 - T' < 1.

This establishes that program ANY-YH terminates within 15 time units.

Verifying a Property of the Cat and Mouse System

Consider the property that, under the assumption

x0  X Xo < a+Xo(1)

Vm V

all computations of the Cat and Mouse system satisfy

ED(Cat.run A(zý = x) --- , )

In Fig. 21, we present a proof diagram of this invariance property. In this diagram we
use control assertions denoting that certain basic states are contained in 7r. For example,
C.run stands for Cat.run E 7r. We also use t,,, for xthe time it takes the mouse to run
the distance X0 .

It is not difficult to verify that the diagram is invariance-sound, including the preserva-
tion of all assertions under a continuous step. The only part that requires more attention
is showing that the 'P2 conjunct

.X0  V-(T-A) > X,= Xo -- v,,.T
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C ý :M rest A C.rest A -- X or =)X

[M. rest-run
A -

I ( M.run A C.rest A O<F(C.rest)=T<A•1 : A

SC. rest-run
M. run A C. ru XA -A< T <t

(P A
, X-Xo-V,.(T-A) > z,= Xo-v,,T

M.rurn-saj>ý

3' (AM.safe V M.wins) A Z,, -=O

Figure 21: A hybrid invariance proof diagram.

is maintained as long as zx,, is nonnegative, which implies T < ti. To show this, it is
sufficient to show v, - (T - A) <. v, - T which is equivalent to

vm

- > 1-- (2)
V, T

From inequality (1), we can obtain

r-- > I -A~'
V, X0

X0
which, using the definition of t, -, gives

-- > V - --. (3 )V Mc u

- >IV,,



Since T < t,, the right-hand side of (3) is not smaller than 1 - A establishing (2).
T

It remains to show that

M.rest A C.rest A z=x,• = ---* M.rest A C.rest A z,= z,.- X0  (4)

V V ... V p0 K run A ^c = -z = o) (5)

Implication (4) is obviously valid- To check implication (5), we observe that both ýo0 and

W1 imply -'Crun, C2 implies x, > z,, and (P3 implies X,. = 0.
This shows that under the assumption (1), property

o(Cat.runA(xc=zx,) --. x,=0)

is valid for the Cat and Mouse system.

4.5 The Gas Burner Example

We conclude with an example of a Gas Burner System, presented in [CHR921. Consider
the timed statechart presented in Fig. 22. This statechart represents a Gas Burner system

Initially Leak = F

Leak := F_
[0,11

So --Leak Leak := T s, Leak S2 -,Leak

ILeak := TI

Figure 22: GAS-BURNER: A gas burner system.

that has three states: so, si, and s 2. There is a boolean state variable Leak whose value
represents whether the system is currently leaking. For clarity, we have labeled each state
with the value of Leak at the states. However, this labeling has no semantic meaning.

The verification problem posed in [CHR92} can be formulated as follows.
Assuming

I- A continuous leaking period cannot extend beyond 1 time unit.

2. Two disjoint 'raking periods are separated by ji non-leaking period extending for at

least 30 time units.
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Prove:

o Safety-Critical Requirement: In any interval longer than 60, the accumulated leak-
ing time is at most 5% of the interval length.

Obviously, the timed statechart of Fig. 22 satisfies assumptions I and 2. The only leaking
state is s1 and it is clear that the system cannot stay continuously in s, for more than 1
time unit and that, between two consecutive (but disjoint) visits to si, the system stays
at the non-leaking state s2 for at least 30 time units.

However, the property to be proved uses the notion of accumulated time in which some
assertion, such as Leak, holds. This cannot be expressed directly in TLr The calculus
of durations, introduced in [CHR92], has a special duration operator fp that measures
the accumulated time p holds. Later, we will briefly consider an extension of TLr which
adopts the duration operator [KP92a].

To handle this problem without extending the logic, we represent the Gas Burner
system as a hybrid system, using auxiliary variables that measure the total time of an
interval and the accumulated time in which variable Leak has been true. For simplicity, we
first consider the safety-critical requirement only for initial intervals, i.e., intervals starting
at T = 0. The extension of the method to arbitrary intervals is then straightforward and
will be discussed later.

Consider the hybrid statechart of Fig. 23. The system presented there employs three

Initially Leak F, z y = z = 0

(z, Leak) (0,F) ,f! "
S, 1o , li

SO S 2

-Leak Leak Leak
(x, Leak) (0,T) -,

0? = 0, :zx 1

(x Leak):= (0, T)

30.__,c. /

Figure 23: H-GAS: The gas burner as a hybrid system.

auxiliary continuous variables as follows:

"• Variable x measures the duration of time in each of the states .s, si, and s" It is
reset to 0 ;)D entry to each of these states

"* Variab,-V y measures the accumulated leaking time. It grows linearly in state .s, and
stays constant in any of the other states

" Variable z rmeasures the total elapsed time6
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With these variables, we can write the requirement that the accumulated leak time does
not exceed 5% of the elapsed time as y < 0.05 z or, equivalently, as 20 -y < z.

Consequently, to verify that the original timed system of Fig. 22 maintains the safety-
critical requirement for initial intervals, it is sufficient to prove that all computations of
the hybrid system of Fig. 23 satisfy the invariance property

C(z>_60 -, 20.y<z).

This is the first example in which the invention of the necessary auxilary invariants is not
immediately obvious. Therefore, we will spend some time on their derivation, We try to
find a relation that continuously holds between y and z and that implies the requirement

z>60 -- 20.y<_z. (6)

Consider a finite prefix of a computation. Let vi denote the number of times the
leaking state s, is visited in this prefix. Since on each visit variable y grows by at most 1
time unit, we have

y < V,

at the end of the prefix. On the same prefix, variable z can be bounded from below by the
sum of the accumulated time spent at s. and the accumulated time spent at s2 , ignoring
the time spent at so which can be arbitrarily short. The accumulated time spent at 51
equals y. Since between two consecutive visits to s, the computation visits s2 , the number
of visits to s2 is at least v, - 1, and each of these visits lasts at least 30 time units. We
thus obtain

z > 30 ,(vi - 1) + N> 31 . y -30,

where the last inequality is obtained by replacing v, by the smaller or equal value y. This
leads to:

z >_ 31 .-y - 30.(7

We will show that this relation implies requirement (6), that is

z>31.y-30 --, (z>60 -- 20 z),

or, equivalently,

z>31.y-30 A z>60 -, 20.y z.
1

By z '.60, which can be written as 30 < - z, we can replace the value 30 in z > 31 .y 30

by the bigger or equal value . z and obtain

leading to
33 .z :'- 31-y,
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i r

z> 31 y it-s

P1 : at~a 1 A 0<_z=I(athsi)_l A (z-z)Ž_31.(y-z)

Iz>__31.-y

Mzt -S2  ezitts 1
z> 31 y- 30

,P2 a••s2 A o < = r(at_-2 ) A (z -) >31.y-30

Figure 24: An invariance proof diagram for the gas burner.

We therefore start with the assumption that the inequality z > 31 -y - 30 holds at
all states in the computation. Working backwards, we can identify what versions of this
invariant should hold on every visit to each of the states so, si, and S2. This leads to
the proof diagram presented in Fig. 24. Transitions in this diagram are identified by the
names of the states in system H-GAS from which they exit. To facilitate the reading of
the diagram, edges entering a node are annotated by an assertion that holds whenever
this node is entered. Thus, it can be shown that z > 31 y (which is the same as
(z - x) > 31 . (y - x) since x = 0 on entry) holds on entering node nj from either no or n2 .

Since x, y, and z all grow at the same linear rate within state s, (corresponding to node
n,), the differences z - z and y - z maintain the values they had on entry. This explains
why (z-x) > 31-(y-z) is maintained within n,. On exit from n, to n 2, x < 1, therefore.
(z - z) > 31 • (y -- x) implies z > 31 . y - 30. z > 31 • y - 30 on entry to n 2. Since, within
n 2 both z and z grow at the same rate, while y remains the same, (z - X) > 31 -y - 30 is
maintained.

It is not difficult to see that the initial condition implies P0 and that each of '0,o -.
or W2, implies z •- 31 • y - 30 Consequently, z > 31 - y - 30 holds over all computations,
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establishing the validity of

0 (z>60 - 20.y z).

To generalize this analysis to arbitrary (not necessarily initial) intervals, we can add a
transition that nondeterministically resets the values of y and z to 0. This will start
the measurerrents corresponding to an interval at an arbitrary point in time. In fact,
the proof diagram of Fig. 24 is also valid for this system. It can be checked that all the
assertions in this diagram are preserved under simultaneous reset of y and z to 0. To
ensure that this new transition is self-disabling, we make it enabled only when y > O0

Proof by an Extended Version of TLr

The previous proof transformed the Gas Burner problem into a hybrid system and verified
the required property in the hybrid model. We will now consider an alternative approach,
which does not modify the given system but uses a stronger logic. Since the original Gas
Burner system as presented in Fig. 22 is a TTS rather than a hybrid system, we return
to the framework of timed transition systems.

As is shown in [KP92a], it is possible to extend TLr further by adding the duration
function fp, which measures the accumulated time in which p has been true up to the
present. We denote the extended logic by TLrf.

Very few extensions are needed as a result of this addition. The first extension is axiom
DURATION-RANGE, which bounds the range of the duration function and also relates it
to the age function.

DURATION-RANGE: 0 < (*) f< < T for every formula i

Since duration expressions can appear in assertions, it is also necessary to define the
primed version of a duration expression fr, denoted (fr)' for some assertion r. This is
given by

(f r)' = if r then fr + T' - T else fr.

This definition states that, if r holds at s, then the value of fr at (s', t') is its value at
(s, t) plus the time difference t' - t. Otherwise, it retains the same value it has at \s, t,.

Since we are back in the timed transition system model, it is sufficient to check the value
of r at (s,t).

Using the logic TLrf, we can express the safety-critical requirement of system GAS-

BURNER of Fig. 22 by the formula

S(T_> 60 , 20 JLeak<T)
We can prove this property using rule T-INV and monotonicity. The auxiliary invariant
assertion used is inspired by the proof diagram of Fig. 24 and is given by

at-so A f Leak - 0

at s, A (7'- l(at Si))>Ž31 .(f Leak - F(aths))
V

at-s 2 s (T ['(at - sz)) > 31 fLPLeak 30.
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This proof can also be presented as a proof diagram, resembling very much the diagram
of Fig. 24. The main difference is that we replace z, y, and z by P(at_s1 ) (according to
the node), f Leak, and T, respectively.
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